10,490 research outputs found

    Conditional network embeddings

    Get PDF

    MCNE: An End-to-End Framework for Learning Multiple Conditional Network Representations of Social Network

    Full text link
    Recently, the Network Representation Learning (NRL) techniques, which represent graph structure via low-dimension vectors to support social-oriented application, have attracted wide attention. Though large efforts have been made, they may fail to describe the multiple aspects of similarity between social users, as only a single vector for one unique aspect has been represented for each node. To that end, in this paper, we propose a novel end-to-end framework named MCNE to learn multiple conditional network representations, so that various preferences for multiple behaviors could be fully captured. Specifically, we first design a binary mask layer to divide the single vector as conditional embeddings for multiple behaviors. Then, we introduce the attention network to model interaction relationship among multiple preferences, and further utilize the adapted message sending and receiving operation of graph neural network, so that multi-aspect preference information from high-order neighbors will be captured. Finally, we utilize Bayesian Personalized Ranking loss function to learn the preference similarity on each behavior, and jointly learn multiple conditional node embeddings via multi-task learning framework. Extensive experiments on public datasets validate that our MCNE framework could significantly outperform several state-of-the-art baselines, and further support the visualization and transfer learning tasks with excellent interpretability and robustness.Comment: Accepted by KDD 2019 Research Track. In Proceedings of the 25th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD'19

    CSNE: Conditional Signed Network Embedding

    Get PDF
    Signed networks are mathematical structures that encode positive and negative relations between entities such as friend/foe or trust/distrust. Recently, several papers studied the construction of useful low-dimensional representations (embeddings) of these networks for the prediction of missing relations or signs. Existing embedding methods for sign prediction generally enforce different notions of status or balance theories in their optimization function. These theories, however, are often inaccurate or incomplete, which negatively impacts method performance. In this context, we introduce conditional signed network embedding (CSNE). Our probabilistic approach models structural information about the signs in the network separately from fine-grained detail. Structural information is represented in the form of a prior, while the embedding itself is used for capturing fine-grained information. These components are then integrated in a rigorous manner. CSNE's accuracy depends on the existence of sufficiently powerful structural priors for modelling signed networks, currently unavailable in the literature. Thus, as a second main contribution, which we find to be highly valuable in its own right, we also introduce a novel approach to construct priors based on the Maximum Entropy (MaxEnt) principle. These priors can model the \emph{polarity} of nodes (degree to which their links are positive) as well as signed \emph{triangle counts} (a measure of the degree structural balance holds to in a network). Experiments on a variety of real-world networks confirm that CSNE outperforms the state-of-the-art on the task of sign prediction. Moreover, the MaxEnt priors on their own, while less accurate than full CSNE, achieve accuracies competitive with the state-of-the-art at very limited computational cost, thus providing an excellent runtime-accuracy trade-off in resource-constrained situations

    CSNE : Conditional Signed Network Embedding

    Get PDF
    Signed networks are mathematical structures that encode positive and negative relations between entities such as friend/foe or trust/distrust. Recently, several papers studied the construction of useful low-dimensional representations (embeddings) of these networks for the prediction of missing relations or signs. Existing embedding methods for sign prediction generally enforce different notions of status or balance theories in their optimization function. These theories, however, are often inaccurate or incomplete, which negatively impacts method performance. In this context, we introduce conditional signed network embedding (CSNE). Our probabilistic approach models structural information about the signs in the network separately from fine-grained detail. Structural information is represented in the form of a prior, while the embedding itself is used for capturing fine-grained information. These components are then integrated in a rigorous manner. CSNE's accuracy depends on the existence of sufficiently powerful structural priors for modelling signed networks, currently unavailable in the literature. Thus, as a second main contribution, which we find to be highly valuable in its own right, we also introduce a novel approach to construct priors based on the Maximum Entropy (MaxEnt) principle. These priors can model the polarity of nodes (degree to which their links are positive) as well as signed triangle counts (a measure of the degree structural balance holds to in a network). Experiments on a variety of real-world networks confirm that CSNE outperforms the state-of-the-art on the task of sign prediction. Moreover, the MaxEnt priors on their own, while less accurate than full CSNE, achieve accuracies competitive with the state-of-the-art at very limited computational cost, thus providing an excellent runtime-accuracy trade-off in resource-constrained situations

    Joint Multitask Learning for Community Question Answering Using Task-Specific Embeddings

    Full text link
    We address jointly two important tasks for Question Answering in community forums: given a new question, (i) find related existing questions, and (ii) find relevant answers to this new question. We further use an auxiliary task to complement the previous two, i.e., (iii) find good answers with respect to the thread question in a question-comment thread. We use deep neural networks (DNNs) to learn meaningful task-specific embeddings, which we then incorporate into a conditional random field (CRF) model for the multitask setting, performing joint learning over a complex graph structure. While DNNs alone achieve competitive results when trained to produce the embeddings, the CRF, which makes use of the embeddings and the dependencies between the tasks, improves the results significantly and consistently across a variety of evaluation metrics, thus showing the complementarity of DNNs and structured learning.Comment: community question answering, task-specific embeddings, multi-task learning, EMNLP-201

    Using Embeddings to Correct for Unobserved Confounding in Networks

    Full text link
    We consider causal inference in the presence of unobserved confounding. We study the case where a proxy is available for the unobserved confounding in the form of a network connecting the units. For example, the link structure of a social network carries information about its members. We show how to effectively use the proxy to do causal inference. The main idea is to reduce the causal estimation problem to a semi-supervised prediction of both the treatments and outcomes. Networks admit high-quality embedding models that can be used for this semi-supervised prediction. We show that the method yields valid inferences under suitable (weak) conditions on the quality of the predictive model. We validate the method with experiments on a semi-synthetic social network dataset. Code is available at github.com/vveitch/causal-network-embeddings.Comment: An earlier version also addressed the use of text embeddings. That material has been expanded and moved to arxiv:1905.12741, "Using Text Embeddings for Causal Inference

    Agent Embeddings: A Latent Representation for Pole-Balancing Networks

    Full text link
    We show that it is possible to reduce a high-dimensional object like a neural network agent into a low-dimensional vector representation with semantic meaning that we call agent embeddings, akin to word or face embeddings. This can be done by collecting examples of existing networks, vectorizing their weights, and then learning a generative model over the weight space in a supervised fashion. We investigate a pole-balancing task, Cart-Pole, as a case study and show that multiple new pole-balancing networks can be generated from their agent embeddings without direct access to training data from the Cart-Pole simulator. In general, the learned embedding space is helpful for mapping out the space of solutions for a given task. We observe in the case of Cart-Pole the surprising finding that good agents make different decisions despite learning similar representations, whereas bad agents make similar (bad) decisions while learning dissimilar representations. Linearly interpolating between the latent embeddings for a good agent and a bad agent yields an agent embedding that generates a network with intermediate performance, where the performance can be tuned according to the coefficient of interpolation. Linear extrapolation in the latent space also results in performance boosts, up to a point

    TXtract: Taxonomy-Aware Knowledge Extraction for Thousands of Product Categories

    Full text link
    Extracting structured knowledge from product profiles is crucial for various applications in e-Commerce. State-of-the-art approaches for knowledge extraction were each designed for a single category of product, and thus do not apply to real-life e-Commerce scenarios, which often contain thousands of diverse categories. This paper proposes TXtract, a taxonomy-aware knowledge extraction model that applies to thousands of product categories organized in a hierarchical taxonomy. Through category conditional self-attention and multi-task learning, our approach is both scalable, as it trains a single model for thousands of categories, and effective, as it extracts category-specific attribute values. Experiments on products from a taxonomy with 4,000 categories show that TXtract outperforms state-of-the-art approaches by up to 10% in F1 and 15% in coverage across all categories.Comment: Accepted to ACL 2020 (Long Paper

    Conditional BERT Contextual Augmentation

    Full text link
    We propose a novel data augmentation method for labeled sentences called conditional BERT contextual augmentation. Data augmentation methods are often applied to prevent overfitting and improve generalization of deep neural network models. Recently proposed contextual augmentation augments labeled sentences by randomly replacing words with more varied substitutions predicted by language model. BERT demonstrates that a deep bidirectional language model is more powerful than either an unidirectional language model or the shallow concatenation of a forward and backward model. We retrofit BERT to conditional BERT by introducing a new conditional masked language model\footnote{The term "conditional masked language model" appeared once in original BERT paper, which indicates context-conditional, is equivalent to term "masked language model". In our paper, "conditional masked language model" indicates we apply extra label-conditional constraint to the "masked language model".} task. The well trained conditional BERT can be applied to enhance contextual augmentation. Experiments on six various different text classification tasks show that our method can be easily applied to both convolutional or recurrent neural networks classifier to obtain obvious improvement.Comment: 9 pages, 1 figur

    CFO: Conditional Focused Neural Question Answering with Large-scale Knowledge Bases

    Full text link
    How can we enable computers to automatically answer questions like "Who created the character Harry Potter"? Carefully built knowledge bases provide rich sources of facts. However, it remains a challenge to answer factoid questions raised in natural language due to numerous expressions of one question. In particular, we focus on the most common questions --- ones that can be answered with a single fact in the knowledge base. We propose CFO, a Conditional Focused neural-network-based approach to answering factoid questions with knowledge bases. Our approach first zooms in a question to find more probable candidate subject mentions, and infers the final answers with a unified conditional probabilistic framework. Powered by deep recurrent neural networks and neural embeddings, our proposed CFO achieves an accuracy of 75.7% on a dataset of 108k questions - the largest public one to date. It outperforms the current state of the art by an absolute margin of 11.8%.Comment: Accepted by ACL 201
    • …
    corecore