9,245 research outputs found

    MsCGAN: Multi-scale Conditional Generative Adversarial Networks for Person Image Generation

    Full text link
    To synthesize high-quality person images with arbitrary poses is challenging. In this paper, we propose a novel Multi-scale Conditional Generative Adversarial Networks (MsCGAN), aiming to convert the input conditional person image to a synthetic image of any given target pose, whose appearance and the texture are consistent with the input image. MsCGAN is a multi-scale adversarial network consisting of two generators and two discriminators. One generator transforms the conditional person image into a coarse image of the target pose globally, and the other is to enhance the detailed quality of the synthetic person image through a local reinforcement network. The outputs of the two generators are then merged into a synthetic, discriminant and high-resolution image. On the other hand, the synthetic image is downsampled to multiple resolutions as the input to multi-scale discriminator networks. The proposed multi-scale generators and discriminators handling different levels of visual features can benefit to synthesizing high-resolution person images with realistic appearance and texture. Experiments are conducted on the Market-1501 and DeepFashion datasets to evaluate the proposed model, and both qualitative and quantitative results demonstrate the superior performance of the proposed MsCGAN

    Soft-Gated Warping-GAN for Pose-Guided Person Image Synthesis

    Full text link
    Despite remarkable advances in image synthesis research, existing works often fail in manipulating images under the context of large geometric transformations. Synthesizing person images conditioned on arbitrary poses is one of the most representative examples where the generation quality largely relies on the capability of identifying and modeling arbitrary transformations on different body parts. Current generative models are often built on local convolutions and overlook the key challenges (e.g. heavy occlusions, different views or dramatic appearance changes) when distinct geometric changes happen for each part, caused by arbitrary pose manipulations. This paper aims to resolve these challenges induced by geometric variability and spatial displacements via a new Soft-Gated Warping Generative Adversarial Network (Warping-GAN), which is composed of two stages: 1) it first synthesizes a target part segmentation map given a target pose, which depicts the region-level spatial layouts for guiding image synthesis with higher-level structure constraints; 2) the Warping-GAN equipped with a soft-gated warping-block learns feature-level mapping to render textures from the original image into the generated segmentation map. Warping-GAN is capable of controlling different transformation degrees given distinct target poses. Moreover, the proposed warping-block is light-weight and flexible enough to be injected into any networks. Human perceptual studies and quantitative evaluations demonstrate the superiority of our Warping-GAN that significantly outperforms all existing methods on two large datasets.Comment: 17 pages, 14 figure

    A Variational U-Net for Conditional Appearance and Shape Generation

    Full text link
    Deep generative models have demonstrated great performance in image synthesis. However, results deteriorate in case of spatial deformations, since they generate images of objects directly, rather than modeling the intricate interplay of their inherent shape and appearance. We present a conditional U-Net for shape-guided image generation, conditioned on the output of a variational autoencoder for appearance. The approach is trained end-to-end on images, without requiring samples of the same object with varying pose or appearance. Experiments show that the model enables conditional image generation and transfer. Therefore, either shape or appearance can be retained from a query image, while freely altering the other. Moreover, appearance can be sampled due to its stochastic latent representation, while preserving shape. In quantitative and qualitative experiments on COCO, DeepFashion, shoes, Market-1501 and handbags, the approach demonstrates significant improvements over the state-of-the-art.Comment: CVPR 2018 (Spotlight). Project Page at https://compvis.github.io/vunet

    Unsupervised Person Image Generation with Semantic Parsing Transformation

    Full text link
    In this paper, we address unsupervised pose-guided person image generation, which is known challenging due to non-rigid deformation. Unlike previous methods learning a rock-hard direct mapping between human bodies, we propose a new pathway to decompose the hard mapping into two more accessible subtasks, namely, semantic parsing transformation and appearance generation. Firstly, a semantic generative network is proposed to transform between semantic parsing maps, in order to simplify the non-rigid deformation learning. Secondly, an appearance generative network learns to synthesize semantic-aware textures. Thirdly, we demonstrate that training our framework in an end-to-end manner further refines the semantic maps and final results accordingly. Our method is generalizable to other semantic-aware person image generation tasks, eg, clothing texture transfer and controlled image manipulation. Experimental results demonstrate the superiority of our method on DeepFashion and Market-1501 datasets, especially in keeping the clothing attributes and better body shapes.Comment: Accepted to CVPR 2019 (Oral). Our project is available at https://github.com/SijieSong/person_generation_sp

    A Deep One-Shot Network for Query-based Logo Retrieval

    Full text link
    Logo detection in real-world scene images is an important problem with applications in advertisement and marketing. Existing general-purpose object detection methods require large training data with annotations for every logo class. These methods do not satisfy the incremental demand of logo classes necessary for practical deployment since it is practically impossible to have such annotated data for new unseen logo. In this work, we develop an easy-to-implement query-based logo detection and localization system by employing a one-shot learning technique. Given an image of a query logo, our model searches for it within a given target image and predicts the possible location of the logo by estimating a binary segmentation mask. The proposed model consists of a conditional branch and a segmentation branch. The former gives a conditional latent representation of the given query logo which is combined with feature maps of the segmentation branch at multiple scales in order to find the matching position of the query logo in a target image, should it be present. Feature matching between the latent query representation and multi-scale feature maps of segmentation branch using simple concatenation operation followed by 1x1 convolution layer makes our model scale-invariant. Despite its simplicity, our query-based logo retrieval framework achieved superior performance in FlickrLogos-32 and TopLogos-10 dataset over different existing baselines.Comment: Accepted in Pattern Recognition, Elsevier(2019

    A Chinese Dataset with Negative Full Forms for General Abbreviation Prediction

    Full text link
    Abbreviation is a common phenomenon across languages, especially in Chinese. In most cases, if an expression can be abbreviated, its abbreviation is used more often than its fully expanded forms, since people tend to convey information in a most concise way. For various language processing tasks, abbreviation is an obstacle to improving the performance, as the textual form of an abbreviation does not express useful information, unless it's expanded to the full form. Abbreviation prediction means associating the fully expanded forms with their abbreviations. However, due to the deficiency in the abbreviation corpora, such a task is limited in current studies, especially considering general abbreviation prediction should also include those full form expressions that do not have valid abbreviations, namely the negative full forms (NFFs). Corpora incorporating negative full forms for general abbreviation prediction are few in number. In order to promote the research in this area, we build a dataset for general Chinese abbreviation prediction, which needs a few preprocessing steps, and evaluate several different models on the built dataset. The dataset is available at https://github.com/lancopku/Chinese-abbreviation-datase

    Texture and Structure Incorporated ScatterNet Hybrid Deep Learning Network (TS-SHDL) For Brain Matter Segmentation

    Full text link
    Automation of brain matter segmentation from MR images is a challenging task due to the irregular boundaries between the grey and white matter regions. In addition, the presence of intensity inhomogeneity in the MR images further complicates the problem. In this paper, we propose a texture and vesselness incorporated version of the ScatterNet Hybrid Deep Learning Network (TS-SHDL) that extracts hierarchical invariant mid-level features, used by fisher vector encoding and a conditional random field (CRF) to perform the desired segmentation. The performance of the proposed network is evaluated by extensive experimentation and comparison with the state-of-the-art methods on several 2D MRI scans taken from the synthetic McGill Brain Web as well as on the MRBrainS dataset of real 3D MRI scans. The advantages of the TS-SHDL network over supervised deep learning networks is also presented in addition to its superior performance over the state-of-the-art.Comment: To Appear in the IEEE International Conference on Computer Vision Workshops (ICCVW) 201

    Time-series modeling with undecimated fully convolutional neural networks

    Full text link
    We present a new convolutional neural network-based time-series model. Typical convolutional neural network (CNN) architectures rely on the use of max-pooling operators in between layers, which leads to reduced resolution at the top layers. Instead, in this work we consider a fully convolutional network (FCN) architecture that uses causal filtering operations, and allows for the rate of the output signal to be the same as that of the input signal. We furthermore propose an undecimated version of the FCN, which we refer to as the undecimated fully convolutional neural network (UFCNN), and is motivated by the undecimated wavelet transform. Our experimental results verify that using the undecimated version of the FCN is necessary in order to allow for effective time-series modeling. The UFCNN has several advantages compared to other time-series models such as the recurrent neural network (RNN) and long short-term memory (LSTM), since it does not suffer from either the vanishing or exploding gradients problems, and is therefore easier to train. Convolution operations can also be implemented more efficiently compared to the recursion that is involved in RNN-based models. We evaluate the performance of our model in a synthetic target tracking task using bearing only measurements generated from a state-space model, a probabilistic modeling of polyphonic music sequences problem, and a high frequency trading task using a time-series of ask/bid quotes and their corresponding volumes. Our experimental results using synthetic and real datasets verify the significant advantages of the UFCNN compared to the RNN and LSTM baselines

    Painting on Placement: Forecasting Routing Congestion using Conditional Generative Adversarial Nets

    Full text link
    Physical design process commonly consumes hours to days for large designs, and routing is known as the most critical step. Demands for accurate routing quality prediction raise to a new level to accelerate hardware innovation with advanced technology nodes. This work presents an approach that forecasts the density of all routing channels over the entire floorplan, with features collected up to placement, using conditional GANs. Specifically, forecasting the routing congestion is constructed as an image translation (colorization) problem. The proposed approach is applied to a) placement exploration for minimum congestion, b) constrained placement exploration and c) forecasting congestion in real-time during incremental placement, using eight designs targeting a fixed FPGA architecture.Comment: 6 pages, 9 figures, to appear at DAC'1

    High-Quality Correspondence and Segmentation Estimation for Dual-Lens Smart-Phone Portraits

    Full text link
    Estimating correspondence between two images and extracting the foreground object are two challenges in computer vision. With dual-lens smart phones, such as iPhone 7Plus and Huawei P9, coming into the market, two images of slightly different views provide us new information to unify the two topics. We propose a joint method to tackle them simultaneously via a joint fully connected conditional random field (CRF) framework. The regional correspondence is used to handle textureless regions in matching and make our CRF system computationally efficient. Our method is evaluated over 2,000 new image pairs, and produces promising results on challenging portrait images
    • …
    corecore