570 research outputs found

    Boundary Algebra: A Simpler Approach to Boolean Algebra and the Sentential Connectives

    Get PDF
    Boundary algebra [BA] is a algebra of type , and a simplified notation for Spencer-Brown’s (1969) primary algebra. The syntax of the primary arithmetic [PA] consists of two atoms, () and the blank page, concatenation, and enclosure between ‘(‘ and ‘)’, denoting the primitive notion of distinction. Inserting letters denoting, indifferently, the presence or absence of () into a PA formula yields a BA formula. The BA axioms are A1: ()()= (), and A2: “(()) [abbreviated ‘⊥’] may be written or erased at will,” implying (⊥)=(). The repeated application of A1 and A2 simplifies any PA formula to either () or ⊥. The basis for BA is B1: abc=bca (concatenation commutes & associates); B2, ⊥a=a (BA has a lower bound, ⊥); B3, (a)a=() (BA is a complemented lattice); and B4, (ba)a=(b)a (implies that BA is a distributive lattice). BA has two intended models: (1) the Boolean algebra 2 with base set B={(),⊥}, such that () ⇔ 1 [dually 0], (a) ⇔ a′, and ab ⇔ a∪b [a∩b]; and (2) sentential logic, such that () ⇔ true [false], (a) ⇔ ~a, and ab ⇔ a∨b [a∧b]. BA is a self-dual notation, facilitates a calculational style of proof, and simplifies clausal reasoning and Quine’s truth value analysis. BA resembles C.S. Peirce’s graphical logic, the symbolic logics of Leibniz and W.E. Johnson, the 2 notation of Byrne (1946), and the Boolean term schemata of Quine (1982).Boundary algebra; boundary logic; primary algebra; primary arithmetic; Boolean algebra; calculation proof; G. Spencer-Brown; C.S. Peirce; existential graphs

    Circuit complexity, proof complexity, and polynomial identity testing

    Full text link
    We introduce a new algebraic proof system, which has tight connections to (algebraic) circuit complexity. In particular, we show that any super-polynomial lower bound on any Boolean tautology in our proof system implies that the permanent does not have polynomial-size algebraic circuits (VNP is not equal to VP). As a corollary to the proof, we also show that super-polynomial lower bounds on the number of lines in Polynomial Calculus proofs (as opposed to the usual measure of number of monomials) imply the Permanent versus Determinant Conjecture. Note that, prior to our work, there was no proof system for which lower bounds on an arbitrary tautology implied any computational lower bound. Our proof system helps clarify the relationships between previous algebraic proof systems, and begins to shed light on why proof complexity lower bounds for various proof systems have been so much harder than lower bounds on the corresponding circuit classes. In doing so, we highlight the importance of polynomial identity testing (PIT) for understanding proof complexity. More specifically, we introduce certain propositional axioms satisfied by any Boolean circuit computing PIT. We use these PIT axioms to shed light on AC^0[p]-Frege lower bounds, which have been open for nearly 30 years, with no satisfactory explanation as to their apparent difficulty. We show that either: a) Proving super-polynomial lower bounds on AC^0[p]-Frege implies VNP does not have polynomial-size circuits of depth d - a notoriously open question for d at least 4 - thus explaining the difficulty of lower bounds on AC^0[p]-Frege, or b) AC^0[p]-Frege cannot efficiently prove the depth d PIT axioms, and hence we have a lower bound on AC^0[p]-Frege. Using the algebraic structure of our proof system, we propose a novel way to extend techniques from algebraic circuit complexity to prove lower bounds in proof complexity

    Boundary Algebra: A Simple Notation for Boolean Algebra and the Truth Functors

    Get PDF
    Boundary algebra [BA] is a simpler notation for Spencer-Brown’s (1969) primary algebra [pa], the Boolean algebra 2, and the truth functors. The primary arithmetic [PA] consists of the atoms ‘()’ and the blank page, concatenation, and enclosure between ‘(‘ and ‘)’, denoting the primitive notion of distinction. Inserting letters denoting the presence or absence of () into a PA formula yields a BA formula. The BA axioms are "()()=()" (A1), and "(()) [=?] may be written or erased at will” (A2). Repeated application of these axioms to a PA formula yields a member of B= {(),?} called its simplification. (a) has two intended interpretations: (a) ? a? (Boolean algebra 2), and (a) ? ~a (sentential logic). BA is self-dual: () ? 1 [dually 0] so that B is the carrier for 2, ab ? a?b [a?b], and (a)b [(a(b))] ? a=b, so that ?=() [()=?] follows trivially and B is a poset. The BA basis abc= bca (Dilworth 1938), a(ab)= a(b), and a()=() (Bricken 2002) facilitates clausal reasoning and proof by calculation. BA also simplifies normal forms and Quine’s (1982) truth value analysis. () ? true [false] yields boundary logic.G. Spencer Brown; boundary algebra; boundary logic; primary algebra; primary arithmetic; Boolean algebra; calculation proof; C.S. Peirce; existential graphs.

    Frege systems for quantified Boolean logic

    Get PDF
    We define and investigate Frege systems for quantified Boolean formulas (QBF). For these new proof systems, we develop a lower bound technique that directly lifts circuit lower bounds for a circuit class C to the QBF Frege system operating with lines from C. Such a direct transfer from circuit to proof complexity lower bounds has often been postulated for propositional systems but had not been formally established in such generality for any proof systems prior to this work. This leads to strong lower bounds for restricted versions of QBF Frege, in particular an exponential lower bound for QBF Frege systems operating with AC0[p] circuits. In contrast, any non-trivial lower bound for propositional AC0[p]-Frege constitutes a major open problem. Improving these lower bounds to unrestricted QBF Frege tightly corresponds to the major problems in circuit complexity and propositional proof complexity. In particular, proving a lower bound for QBF Frege systems operating with arbitrary P/poly circuits is equivalent to either showing a lower bound for P/poly or for propositional extended Frege (which operates with P/poly circuits). We also compare our new QBF Frege systems to standard sequent calculi for QBF and establish a correspondence to intuitionistic bounded arithmetic.This research was supported by grant nos. 48138 and 60842 from the John Templeton Foundation, EPSRC grant EP/L024233/1, and a Doctoral Prize Fellowship from EPSRC (third author). The second author was funded by the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007–2013)/ERC grant agreement no. 279611 and under the European Union’s Horizon 2020 Research and Innovation Programme/ERC grant agreement no. 648276 AUTAR. The fourth author was supported by the Austrian Science Fund (FWF) under project number P28699 and by the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2014)/ERC Grant Agreement no. 61507. Part of this work was done when Beyersdorff and Pich were at the University of Leeds and Bonacina at Sapienza University Rome.Peer ReviewedPostprint (published version

    Lower bounds: from circuits to QBF proof systems

    Get PDF
    A general and long-standing belief in the proof complexity community asserts that there is a close connection between progress in lower bounds for Boolean circuits and progress in proof size lower bounds for strong propositional proof systems. Although there are famous examples where a transfer from ideas and techniques from circuit complexity to proof complexity has been effective, a formal connection between the two areas has never been established so far. Here we provide such a formal relation between lower bounds for circuit classes and lower bounds for Frege systems for quantified Boolean formulas (QBF). Starting from a propositional proof system P we exhibit a general method how to obtain a QBF proof system P+∀red{P}, which is inspired by the transition from resolution to Q-resolution. For us the most important case is a new and natural hierarchy of QBF Frege systems C-Frege+∀red that parallels the well-studied propositional hierarchy of C-Frege systems, where lines in proofs are restricted to belong to a circuit class C. Building on earlier work for resolution [Beyersdorff, Chew and Janota, 2015a] we establish a lower bound technique via strategy extraction that transfers arbitrary lower bounds for the circuit class C to lower bounds in C-Frege+∀red. By using the full spectrum of state-of-the-art circuit lower bounds, our new lower bound method leads to very strong lower bounds for QBF \FREGE systems: 1. exponential lower bounds and separations for the QBF proof system ACo[p]-Frege+∀red for all primes p; 2. an exponential separation of ACo[p]-Frege+∀red from TCo/d-Frege+∀red; 3. an exponential separation of the hierarchy of constant-depth systems ACo/d-Frege+∀red by formulas of depth independent of d. In the propositional case, all these results correspond to major open problems

    Transition to Higher Mathematics: Structure and Proof (Second Edition)

    Get PDF
    This book is written for students who have taken calculus and want to learn what “real mathematics is. We hope you will find the material engaging and interesting, and that you will be encouraged to learn more advanced mathematics. This is the second edition of our text. It is intended for students who have taken a calculus course, and are interested in learning what higher mathematics is all about. It can be used as a textbook for an Introduction to Proofs course, or for self-study. Chapter 1: Preliminaries, Chapter 2: Relations, Chapter 3: Proofs, Chapter 4: Principles of Induction, Chapter 5: Limits, Chapter 6: Cardinality, Chapter 7: Divisibility, Chapter 8: The Real Numbers, Chapter 9: Complex Numbers. The last 4 chapters can also be used as independent introductions to four topics in mathematics: Cardinality; Divisibility; Real Numbers; Complex Numbers.https://openscholarship.wustl.edu/books/1010/thumbnail.jp
    corecore