535 research outputs found

    Efficient Generation of Craig Interpolants in Satisfiability Modulo Theories

    Full text link
    The problem of computing Craig Interpolants has recently received a lot of interest. In this paper, we address the problem of efficient generation of interpolants for some important fragments of first order logic, which are amenable for effective decision procedures, called Satisfiability Modulo Theory solvers. We make the following contributions. First, we provide interpolation procedures for several basic theories of interest: the theories of linear arithmetic over the rationals, difference logic over rationals and integers, and UTVPI over rationals and integers. Second, we define a novel approach to interpolate combinations of theories, that applies to the Delayed Theory Combination approach. Efficiency is ensured by the fact that the proposed interpolation algorithms extend state of the art algorithms for Satisfiability Modulo Theories. Our experimental evaluation shows that the MathSAT SMT solver can produce interpolants with minor overhead in search, and much more efficiently than other competitor solvers.Comment: submitted to ACM Transactions on Computational Logic (TOCL

    Connexive Conditional Logic. Part I

    Get PDF
    In this paper, first some propositional conditional logics based on Belnap and Dunn’s useful four-valued logic of first-degree entailment are introduced semantically, which are then turned into systems of weakly and unrestrictedly connexive conditional logic. The general frame semantics for these logics makes use of a set of allowable (or admissible) extension/antiextension pairs. Next, sound and complete tableau calculi for these logics are presented. Moreover, an expansion of the basic conditional connexive logics by a constructive implication is considered, which gives an opportunity to discuss recent related work, motivated by the combination of indicative and counterfactual conditionals. Tableau calculi for the basic constructive connexive conditional logics are defined and shown to be sound and complete with respect to their semantics. This semantics has to ensure a persistence property with respect to the preorder that is used to interpret the constructive implication

    Relevance via decomposition: A project, some results, an open question

    Get PDF
    We report on progress and an unsolved problem in our attempt to obtain a clear rationale for relevance logic via semantic decomposition trees. Suitable decomposition rules, constrained by a natural parity condition, generate a set of directly acceptable formulae that contains all axioms of the well-known system R, is closed under substitution and conjunction, satisfies the letter-sharing condition, but is not closed under detachment. To extend it, a natural recursion is built into the ocedure for constructing decomposition trees. The resulting set of acceptable formulae has many attractive features, but it remains an open question whether it continues to satisfy the crucial letter-sharing condition

    Relevance via decomposition

    Get PDF
    We report on progress and an unsolved problem in our attempt to obtain a clear rationale for relevance logic via semantic decomposition trees. Suitable decomposition rules, constrained by a natural parity condition, generate a set of directly acceptable formulae that contains all axioms of the well-known system R, is closed under substitution and conjunction, satisfies the letter-sharing condition, but is not closed under detachment. To extend it, a natural recursion is built into the procedure for constructing decomposition trees. The resulting set of acceptable formulae has many attractive features, but it remains an open question whether it continues to satisfy the crucial letter-sharing condition

    Action, Time and Space in Description Logics

    Get PDF
    Description Logics (DLs) are a family of logic-based knowledge representation (KR) formalisms designed to represent and reason about static conceptual knowledge in a semantically well-understood way. On the other hand, standard action formalisms are KR formalisms based on classical logic designed to model and reason about dynamic systems. The largest part of the present work is dedicated to integrating DLs with action formalisms, with the main goal of obtaining decidable action formalisms with an expressiveness significantly beyond propositional. To this end, we offer DL-tailored solutions to the frame and ramification problem. One of the main technical results is that standard reasoning problems about actions (executability and projection), as well as the plan existence problem are decidable if one restricts the logic for describing action pre- and post-conditions and the state of the world to decidable Description Logics. A smaller part of the work is related to decidable extensions of Description Logics with concrete datatypes, most importantly with those allowing to refer to the notions of space and time

    The measurement postulates of quantum mechanics are operationally redundant

    Get PDF
    Understanding the core content of quantum mechanics requires us to disentangle the hidden logical relationships between the postulates of this theory. Here we show that the mathematical structure of quantum measurements, the formula for assigning outcome probabilities (Born's rule) and the post-measurement state-update rule, can be deduced from the other quantum postulates, often referred to as "unitary quantum mechanics", and the assumption that ensembles on finite-dimensional Hilbert spaces are characterised by finitely many parameters. This is achieved by taking an operational approach to physical theories, and using the fact that the manner in which a physical system is partitioned into subsystems is a subjective choice of the observer, and hence should not affect the predictions of the theory. In contrast to other approaches, our result does not assume that measurements are related to operators or bases, it does not rely on the universality of quantum mechanics, and it is independent of the interpretation of probability.Comment: This is a post-peer-review, pre-copyedit version of an article published in Nature Communications. The final authenticated version is available online at: http://dx.doi.org/10.1038/s41467-019-09348-

    Logics for Dynamics of Information and Preferences: Seminar’s yearbook 2008

    Get PDF

    Boxes and Diamonds: An Open Introduction to Modal Logic

    Get PDF
    A textbook for modal and other intensional logics based on the Open Logic Project. It covers normal modal logics, relational semantics, axiomatic and tableaux proof systems, intuitionistic logic, and counterfactual conditionals

    Tractable approximate deduction for OWL

    Get PDF
    Acknowledgements This work has been partially supported by the European project Marrying Ontologies and Software Technologies (EU ICT2008-216691), the European project Knowledge Driven Data Exploitation (EU FP7/IAPP2011-286348), the UK EPSRC project WhatIf (EP/J014354/1). The authors thank Prof. Ian Horrocks and Dr. Giorgos Stoilos for their helpful discussion on role subsumptions. The authors thank Rafael S. Gonçalves et al. for providing their hotspots ontologies. The authors also thank BoC-group for providing their ADOxx Metamodelling ontologies.Peer reviewedPostprin

    Automated Reasoning

    Get PDF
    This volume, LNAI 13385, constitutes the refereed proceedings of the 11th International Joint Conference on Automated Reasoning, IJCAR 2022, held in Haifa, Israel, in August 2022. The 32 full research papers and 9 short papers presented together with two invited talks were carefully reviewed and selected from 85 submissions. The papers focus on the following topics: Satisfiability, SMT Solving,Arithmetic; Calculi and Orderings; Knowledge Representation and Jutsification; Choices, Invariance, Substitutions and Formalization; Modal Logics; Proofs System and Proofs Search; Evolution, Termination and Decision Prolems. This is an open access book
    • …
    corecore