1,288 research outputs found

    Conditional Affordance Learning for Driving in Urban Environments

    Full text link
    Most existing approaches to autonomous driving fall into one of two categories: modular pipelines, that build an extensive model of the environment, and imitation learning approaches, that map images directly to control outputs. A recently proposed third paradigm, direct perception, aims to combine the advantages of both by using a neural network to learn appropriate low-dimensional intermediate representations. However, existing direct perception approaches are restricted to simple highway situations, lacking the ability to navigate intersections, stop at traffic lights or respect speed limits. In this work, we propose a direct perception approach which maps video input to intermediate representations suitable for autonomous navigation in complex urban environments given high-level directional inputs. Compared to state-of-the-art reinforcement and conditional imitation learning approaches, we achieve an improvement of up to 68 % in goal-directed navigation on the challenging CARLA simulation benchmark. In addition, our approach is the first to handle traffic lights and speed signs by using image-level labels only, as well as smooth car-following, resulting in a significant reduction of traffic accidents in simulation.Comment: Accepted for Conference on Robot Learning (CoRL) 201

    Virtual to Real Reinforcement Learning for Autonomous Driving

    Full text link
    Reinforcement learning is considered as a promising direction for driving policy learning. However, training autonomous driving vehicle with reinforcement learning in real environment involves non-affordable trial-and-error. It is more desirable to first train in a virtual environment and then transfer to the real environment. In this paper, we propose a novel realistic translation network to make model trained in virtual environment be workable in real world. The proposed network can convert non-realistic virtual image input into a realistic one with similar scene structure. Given realistic frames as input, driving policy trained by reinforcement learning can nicely adapt to real world driving. Experiments show that our proposed virtual to real (VR) reinforcement learning (RL) works pretty well. To our knowledge, this is the first successful case of driving policy trained by reinforcement learning that can adapt to real world driving data

    End-to-end Driving via Conditional Imitation Learning

    Get PDF
    Deep networks trained on demonstrations of human driving have learned to follow roads and avoid obstacles. However, driving policies trained via imitation learning cannot be controlled at test time. A vehicle trained end-to-end to imitate an expert cannot be guided to take a specific turn at an upcoming intersection. This limits the utility of such systems. We propose to condition imitation learning on high-level command input. At test time, the learned driving policy functions as a chauffeur that handles sensorimotor coordination but continues to respond to navigational commands. We evaluate different architectures for conditional imitation learning in vision-based driving. We conduct experiments in realistic three-dimensional simulations of urban driving and on a 1/5 scale robotic truck that is trained to drive in a residential area. Both systems drive based on visual input yet remain responsive to high-level navigational commands. The supplementary video can be viewed at https://youtu.be/cFtnflNe5fMComment: Published at the International Conference on Robotics and Automation (ICRA), 201

    Exploring the Limitations of Behavior Cloning for Autonomous Driving

    Get PDF
    Driving requires reacting to a wide variety of complex environment conditions and agent behaviors. Explicitly modeling each possible scenario is unrealistic. In contrast, imitation learning can, in theory, leverage data from large fleets of human-driven cars. Behavior cloning in particular has been successfully used to learn simple visuomotor policies end-to-end, but scaling to the full spectrum of driving behaviors remains an unsolved problem. In this paper, we propose a new benchmark to experimentally investigate the scalability and limitations of behavior cloning. We show that behavior cloning leads to state-of-the-art results, including in unseen environments, executing complex lateral and longitudinal maneuvers without these reactions being explicitly programmed. However, we confirm well-known limitations (due to dataset bias and overfitting), new generalization issues (due to dynamic objects and the lack of a causal model), and training instability requiring further research before behavior cloning can graduate to real-world driving. The code of the studied behavior cloning approaches can be found at https://github.com/felipecode/coiltraine
    corecore