33,120 research outputs found

    Cortical Dynamics of Contextually-Cued Attentive Visual Learning and Search: Spatial and Object Evidence Accumulation

    Full text link
    How do humans use predictive contextual information to facilitate visual search? How are consistently paired scenic objects and positions learned and used to more efficiently guide search in familiar scenes? For example, a certain combination of objects can define a context for a kitchen and trigger a more efficient search for a typical object, such as a sink, in that context. A neural model, ARTSCENE Search, is developed to illustrate the neural mechanisms of such memory-based contextual learning and guidance, and to explain challenging behavioral data on positive/negative, spatial/object, and local/distant global cueing effects during visual search. The model proposes how global scene layout at a first glance rapidly forms a hypothesis about the target location. This hypothesis is then incrementally refined by enhancing target-like objects in space as a scene is scanned with saccadic eye movements. The model clarifies the functional roles of neuroanatomical, neurophysiological, and neuroimaging data in visual search for a desired goal object. In particular, the model simulates the interactive dynamics of spatial and object contextual cueing in the cortical What and Where streams starting from early visual areas through medial temporal lobe to prefrontal cortex. After learning, model dorsolateral prefrontal cortical cells (area 46) prime possible target locations in posterior parietal cortex based on goalmodulated percepts of spatial scene gist represented in parahippocampal cortex, whereas model ventral prefrontal cortical cells (area 47/12) prime possible target object representations in inferior temporal cortex based on the history of viewed objects represented in perirhinal cortex. The model hereby predicts how the cortical What and Where streams cooperate during scene perception, learning, and memory to accumulate evidence over time to drive efficient visual search of familiar scenes.CELEST, an NSF Science of Learning Center (SBE-0354378); SyNAPSE program of Defense Advanced Research Projects Agency (HR0011-09-3-0001, HR0011-09-C-0011

    View-Invariant Object Category Learning, Recognition, and Search: How Spatial and Object Attention Are Coordinated Using Surface-Based Attentional Shrouds

    Full text link
    Air Force Office of Scientific Research (F49620-01-1-0397); National Science Foundation (SBE-0354378); Office of Naval Research (N00014-01-1-0624

    Finding any Waldo: zero-shot invariant and efficient visual search

    Full text link
    Searching for a target object in a cluttered scene constitutes a fundamental challenge in daily vision. Visual search must be selective enough to discriminate the target from distractors, invariant to changes in the appearance of the target, efficient to avoid exhaustive exploration of the image, and must generalize to locate novel target objects with zero-shot training. Previous work has focused on searching for perfect matches of a target after extensive category-specific training. Here we show for the first time that humans can efficiently and invariantly search for natural objects in complex scenes. To gain insight into the mechanisms that guide visual search, we propose a biologically inspired computational model that can locate targets without exhaustive sampling and generalize to novel objects. The model provides an approximation to the mechanisms integrating bottom-up and top-down signals during search in natural scenes.Comment: Number of figures: 6 Number of supplementary figures: 1

    Night-to-Day Image Translation for Retrieval-based Localization

    Full text link
    Visual localization is a key step in many robotics pipelines, allowing the robot to (approximately) determine its position and orientation in the world. An efficient and scalable approach to visual localization is to use image retrieval techniques. These approaches identify the image most similar to a query photo in a database of geo-tagged images and approximate the query's pose via the pose of the retrieved database image. However, image retrieval across drastically different illumination conditions, e.g. day and night, is still a problem with unsatisfactory results, even in this age of powerful neural models. This is due to a lack of a suitably diverse dataset with true correspondences to perform end-to-end learning. A recent class of neural models allows for realistic translation of images among visual domains with relatively little training data and, most importantly, without ground-truth pairings. In this paper, we explore the task of accurately localizing images captured from two traversals of the same area in both day and night. We propose ToDayGAN - a modified image-translation model to alter nighttime driving images to a more useful daytime representation. We then compare the daytime and translated night images to obtain a pose estimate for the night image using the known 6-DOF position of the closest day image. Our approach improves localization performance by over 250% compared the current state-of-the-art, in the context of standard metrics in multiple categories.Comment: Published in ICRA 201

    Binocular fusion and invariant category learning due to predictive remapping during scanning of a depthful scene with eye movements

    Get PDF
    How does the brain maintain stable fusion of 3D scenes when the eyes move? Every eye movement causes each retinal position to process a different set of scenic features, and thus the brain needs to binocularly fuse new combinations of features at each position after an eye movement. Despite these breaks in retinotopic fusion due to each movement, previously fused representations of a scene in depth often appear stable. The 3D ARTSCAN neural model proposes how the brain does this by unifying concepts about how multiple cortical areas in the What and Where cortical streams interact to coordinate processes of 3D boundary and surface perception, spatial attention, invariant object category learning, predictive remapping, eye movement control, and learned coordinate transformations. The model explains data from single neuron and psychophysical studies of covert visual attention shifts prior to eye movements. The model further clarifies how perceptual, attentional, and cognitive interactions among multiple brain regions (LGN, V1, V2, V3A, V4, MT, MST, PPC, LIP, ITp, ITa, SC) may accomplish predictive remapping as part of the process whereby view-invariant object categories are learned. These results build upon earlier neural models of 3D vision and figure-ground separation and the learning of invariant object categories as the eyes freely scan a scene. A key process concerns how an object's surface representation generates a form-fitting distribution of spatial attention, or attentional shroud, in parietal cortex that helps maintain the stability of multiple perceptual and cognitive processes. Predictive eye movement signals maintain the stability of the shroud, as well as of binocularly fused perceptual boundaries and surface representations.Published versio

    Visual processing of words in a patient with visual form agnosia: A behavioural and fMRI study

    Get PDF
    Patient D.F. has a profound and enduring visual form agnosia due to a carbon monoxide poisoning episode suffered in 1988. Her inability to distinguish simple geometric shapes or single alphanumeric characters can be attributed to a bilateral loss of cortical area LO, a loss that has been well established through structural and functional fMRI. Yet despite this severe perceptual deficit, D.F. is able to “guess” remarkably well the identity of whole words. This paradoxical finding, which we were able to replicate more than 20 years following her initial testing, raises the question as to whether D.F. has retained specialized brain circuitry for word recognition that is able to function to some degree without the benefit of inputs from area LO. We used fMRI to investigate this, and found regions in the left fusiform gyrus, left inferior frontal gyrus, and left middle temporal cortex that responded selectively to words. A group of healthy control subjects showed similar activations. The left fusiform activations appear to coincide with the area commonly named the visual word form area (VWFA) in studies of healthy individuals, and appear to be quite separate from the fusiform face area. We hypothesize that there is a route to this area that lies outside area LO, and which remains relatively unscathed in D.F
    corecore