23,510 research outputs found

    Condition-based prediction of time-dependent reliability in composites

    Get PDF
    This paper presents a reliability-based prediction methodology to obtain the remaining useful life of composite materials subjected to fatigue degradation. Degradation phenomena such as stiffness reduction and increase in matrix micro-cracks density are sequentially estimated through a Bayesian filtering framework that incorporates information from both multi-scale damage models and damage measurements, that are sequentially collected along the process. A set of damage states are further propagated forward in time by simulating the damage progression using the models in the absence of new damage measurements to estimate the time-dependent reliability of the composite material. As a key contribution, the estimation of the remaining useful life is obtained as a probability from the prediction of the time-dependent reliability, whose validity is formally proven using the axioms of Probability Logic. A case study is presented using multi-scale fatigue damage data from a cross-ply carbon-epoxy laminate

    Aging concrete structures: a review of mechanics and concepts

    Get PDF
    The safe and cost-efficient management of our built infrastructure is a challenging task considering the expected service life of at least 50 years. In spite of time-dependent changes in material properties, deterioration processes and changing demand by society, the structures need to satisfy many technical requirements related to serviceability, durability, sustainability and bearing capacity. This review paper summarizes the challenges associated with the safe design and maintenance of aging concrete structures and gives an overview of some concepts and approaches that are being developed to address these challenges

    Reliability-based analysis of recycled aggregate concrete under carbonation

    Get PDF
    Durability represents a crucial issue for evaluating safety and serviceability of reinforced concrete structures. Many studies have already focused on carbonation-induced corrosion of natural aggregate concrete (NAC) structures, leading to several prediction models to estimate carbonation depth. Less research is devoted instead on recycled aggregate concrete (RAC), about which limited experimental works exist aimed at assessing the carbonation coefficient in accelerated tests. Additionally, deteriorating processes are subject to uncertainty, when defining materials, geometry, and environmental actions during the service life of structures. This work presents a reliability-based analysis of carbonation resistance of RACs, using experimental carbonation coefficients derived from the literature, and applied in the full-probabilistic method prosed in fib Bulletin 34. Results demonstrate how aggregates replacement ratio and w/c ratio influence the reliability of RAC carbonation resistance

    Press forming a 0/90 cross-ply advanced thermoplastic composite using the double-dome benchmark geometry

    Get PDF
    A pre-consolidated thermoplastic advanced composite cross-ply sheet comprised of two uniaxial plies orientated at 0/90° has been thermoformed using tooling based on the double-dome bench-mark geometry. Mitigation of wrinkling was achieved using springs to apply tension to the forming sheet rather than using a friction-based blank-holder. The shear angle across the surface of the formed geometry has been measured and compared with data collected previously from experiments on woven engineering fabrics. The shear behaviour of the material has been characterised as a function of rate and temperature using the picture frame shear test technique. Multi-scale modelling predictions of the material’s shear behaviour have been incorporated in finite element forming predictions; the latter are compared against the experimental results

    Brain Modularity Mediates the Relation between Task Complexity and Performance

    Full text link
    Recent work in cognitive neuroscience has focused on analyzing the brain as a network, rather than as a collection of independent regions. Prior studies taking this approach have found that individual differences in the degree of modularity of the brain network relate to performance on cognitive tasks. However, inconsistent results concerning the direction of this relationship have been obtained, with some tasks showing better performance as modularity increases and other tasks showing worse performance. A recent theoretical model (Chen & Deem, 2015) suggests that these inconsistencies may be explained on the grounds that high-modularity networks favor performance on simple tasks whereas low-modularity networks favor performance on more complex tasks. The current study tests these predictions by relating modularity from resting-state fMRI to performance on a set of simple and complex behavioral tasks. Complex and simple tasks were defined on the basis of whether they did or did not draw on executive attention. Consistent with predictions, we found a negative correlation between individuals' modularity and their performance on a composite measure combining scores from the complex tasks but a positive correlation with performance on a composite measure combining scores from the simple tasks. These results and theory presented here provide a framework for linking measures of whole brain organization from network neuroscience to cognitive processing.Comment: 47 pages; 4 figure

    Thermooxidative stability of PMMA composites

    Get PDF
    Tato práce se zabývá studiem termooxidační stability kompozitů polymethylmethakrylátu (PMMA) plněného mikro a nanočásticemi siliky. V připravených vzorcích byly použity různé objemové zlomky a různé velikosti částic siliky. Studium stability bylo prováděno pomocí termogravimetrie, která umožňuje simulovat podmínky termooxidační degradace. Indukční perioda byla stanovena za použití různých rychlostí ohřevu a aplikací izokonverzních metod. Závislosti teplot degradací na rychlostech ohřevu sloužily pro určení parametrů odvozených ze čtyř různých teplotních funkcí, které dovolují předpověď stability materiálu (indukční periody) při zvoleném rozsahu teplot. Zjištěné výsledky ukazují, že větší částice siliky snižuji stabilitu PMMA, zatímco nanočástice v nízkých koncentracích ji nijak neovlivňují.In this work the thermooxidative stability of poly(methyl metacrylate) (PMMA) composites reinforced with silica micro and nanoparticles was studied. Different volume fractions and particles sizes of silica particles were used. PMMA/silica composites were analysed by thermogravimetry which simulated the conditions of thermooxidative degradation. The induction periods were determined using different heating rates and applying the isoconversional methods. The dependence of degradation temperatures on heating rates were used for the determination of adjustable parameters derived for four different temperature functions allowing the prediction of material stability (induction periods) at chosen temperatures. Results showed that the larger silica particles destabilized the PMMA structure while smallest nanoparticles at low concentration had no effect on the stability.

    Analysis of whisker-toughened ceramic components: A design engineer's viewpoint

    Get PDF
    The use of ceramics components in gas turbines, cutting tools, and heat exchangers has been limited by the relatively low flaw tolerance of monolithic ceramics. The development of whisker toughened ceramic composites offers the potential for considerable improvement in fracture toughness as well as strength. However, the variability of strength is still too high for the application of deterministic design approaches. Several phenomenological reliability theories proposed for this material system are reviewed and the development is reported of a public domain computer algorithm. This algorithm, when coupled with a general purpose finite element program, predicts the fast fracture reliability of a structural component under multiaxial loading conditions

    Research priorities for advanced fibrous composites

    Get PDF
    Priorities for research in advanced laminated fibrous composite materials are presented. Supporting evidence is presented in two bodies, including a general literature survey and a survey of aerospace composite hardware and service experience. Both surveys were undertaken during 1977-1979. Specific results and conclusions indicate that a significant portion of contemporary published research diverges from recommended priorites
    corecore