3 research outputs found

    Solving generic nonarchimedean semidefinite programs using stochastic game algorithms

    Full text link
    A general issue in computational optimization is to develop combinatorial algorithms for semidefinite programming. We address this issue when the base field is nonarchimedean. We provide a solution for a class of semidefinite feasibility problems given by generic matrices. Our approach is based on tropical geometry. It relies on tropical spectrahedra, which are defined as the images by the valuation of nonarchimedean spectrahedra. We establish a correspondence between generic tropical spectrahedra and zero-sum stochastic games with perfect information. The latter have been well studied in algorithmic game theory. This allows us to solve nonarchimedean semidefinite feasibility problems using algorithms for stochastic games. These algorithms are of a combinatorial nature and work for large instances.Comment: v1: 25 pages, 4 figures; v2: 27 pages, 4 figures, minor revisions + benchmarks added; v3: 30 pages, 6 figures, generalization to non-Metzler sign patterns + some results have been replaced by references to the companion work arXiv:1610.0674

    Non-acyclicity of coset lattices and generation of finite groups

    Get PDF

    Condition numbers of stochastic mean payoff games and what they say about nonarchimedean semidefinite programming

    No full text
    14 pages, 2 figuresInternational audienceSemidefinite programming can be considered over any real closed field, including fields of Puiseux series equipped with their nonarchimedean valuation. Nonarchimedean semidefinite programs encode parametric families of classical semidefinite programs, for sufficiently large values of the parameter. Recently, a correspondence has been established between nonarchimedean semidefinite programs and stochastic mean payoff games with perfect information. This correspondence relies on tropical geometry. It allows one to solve generic nonarchimedean semidefinite feasibility problems, of large scale, by means of stochastic game algorithms. In this paper, we show that the mean payoff of these games can be interpreted as a condition number for the corresponding nonarchimedean feasibility problems. This number measures how close a feasible instance is from being infeasible, and vice versa. We show that it coincides with the maximal radius of a ball in Hilbert's projective metric, that is included in the feasible set. The geometric interpretation of the condition number relies in particular on a duality theorem for tropical semidefinite feasibility programs. Then, we bound the complexity of the feasibility problem in terms of the condition number. We finally give explicit bounds for this condition number, in terms of the characteristics of the stochastic game. As a consequence, we show that the simplest algorithm to decide whether a stochastic mean payoff game is winning, namely value iteration, has a pseudopolynomial complexity when the number of random positions is fixed
    corecore