29 research outputs found

    Chip and Signature Interleaving in DS CDMA Systems

    Get PDF
    Siirretty Doriast

    Study of numeric Saturation Effects in Linear Digital Compensators

    Get PDF
    Saturation arithmetic is often used in finite precision digital compensators to circumvent instability due to radix overflow. The saturation limits in the digital structure lead to nonlinear behavior during large state transients. It is shown that if all recursive loops in a compensator are interrupted by at least one saturation limit, then there exists a bounded external scaling rule which assures against overflow at all nodes in the structure. Design methods are proposed based on the generalized second method of Lyapunov, which take the internal saturation limits into account to implement a robust dual-mode suboptimal control for bounded input plants. The saturating digital compensator provides linear regulation for small disturbances, and near-time-optimal control for large disturbances or changes in the operating point. Computer aided design tools are developed to facilitate the analysis and design of this class of digital compensators

    The State of Lexicodes and Ferrers Diagram Rank-Metric Codes

    Get PDF
    In coding theory we wish to find as many codewords as possible, while simultaneously maintaining high distance between codewords to ease the detection and correction of errors. For linear codes, this translates to finding high-dimensional subspaces of a given metric space, where the induced distance between vectors stays above a specified minimum. In this work I describe the recent advances of this problem in the contexts of lexicodes and Ferrers diagram rank-metric codes. In the first chapter, we study lexicodes. For a ring R, we describe a lexicographic ordering of the left R-module Rn. With this ordering we set up a greedy algorithm which sequentially selects vectors for which all linear combinations satisfy a given property. The resulting output is called a lexicode. This process was discussed earlier in the literature for fields and chain rings. We describe a generalization of the algorithm to finite principal ideal rings. In the second chapter, we investigate Ferrers diagram rank-metric codes, which play a role in the construction of subspace codes. A well-known upper bound for dimension of these codes is conjectured to be sharp. We describe several solved cases of the conjecture, and further contribute new ones. In addition, probabilities for maximal Ferrers diagram codes and MRD codes are investigated in a new light. It is shown that for growing field size, the limiting probability depends highly on the Ferrers diagram

    The Telecommunications and Data Acquisition Report

    Get PDF
    This quarterly publication (July-Sept. 1986) provides archival reports on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA). In space communications, radio navigation, radio science, and ground-based radio astronomy, it reports on activities of the Deep Space Network (DSN) and its associated Ground Communications Facility (GCF) in planning, in supporting research and technology, in implementation, and in operations. This work is performed for NASA's Office of Space Tracking and Data Systems (OSTDS). In geodynamics, the publication reports on the application of radio interferometry at microwave frequencies for geodynamic measurements. In the search for extraterrestrial intelligence (SETI), it reports on implementation and operations for searching the microwave spectrum. The latter two programs are performed for NASA's Office of Space Science and Applications (OSSA)

    NASA Tech Briefs, September 1990

    Get PDF
    Topics covered include: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences

    Avances en el estudio de la complejidad lineal del filtrado no lineal

    Get PDF
    La mayoría de autores que abordan el tema de la complejidad lineal de secuencias binarias generadas para su aplicación criptográfica se limitan a definir familias muy específicas de filtrados no lineales para los que se puede acotar la complejidad lineal de sus correspondientes secuencias generadas. Aquí se introduce una nueva línea original para el problema de la complejidad lineal para un rango amplio y general de filtrados no lineales. Nuevos conceptos permiten determinar cotas inferiores y superiores al valor de la complejidad linea

    Algebraic Codes For Error Correction In Digital Communication Systems

    Get PDF
    Access to the full-text thesis is no longer available at the author's request, due to 3rd party copyright restrictions. Access removed on 29.11.2016 by CS (TIS).Metadata merged with duplicate record (http://hdl.handle.net/10026.1/899) on 20.12.2016 by CS (TIS).C. Shannon presented theoretical conditions under which communication was possible error-free in the presence of noise. Subsequently the notion of using error correcting codes to mitigate the effects of noise in digital transmission was introduced by R. Hamming. Algebraic codes, codes described using powerful tools from algebra took to the fore early on in the search for good error correcting codes. Many classes of algebraic codes now exist and are known to have the best properties of any known classes of codes. An error correcting code can be described by three of its most important properties length, dimension and minimum distance. Given codes with the same length and dimension, one with the largest minimum distance will provide better error correction. As a result the research focuses on finding improved codes with better minimum distances than any known codes. Algebraic geometry codes are obtained from curves. They are a culmination of years of research into algebraic codes and generalise most known algebraic codes. Additionally they have exceptional distance properties as their lengths become arbitrarily large. Algebraic geometry codes are studied in great detail with special attention given to their construction and decoding. The practical performance of these codes is evaluated and compared with previously known codes in different communication channels. Furthermore many new codes that have better minimum distance to the best known codes with the same length and dimension are presented from a generalised construction of algebraic geometry codes. Goppa codes are also an important class of algebraic codes. A construction of binary extended Goppa codes is generalised to codes with nonbinary alphabets and as a result many new codes are found. This construction is shown as an efficient way to extend another well known class of algebraic codes, BCH codes. A generic method of shortening codes whilst increasing the minimum distance is generalised. An analysis of this method reveals a close relationship with methods of extending codes. Some new codes from Goppa codes are found by exploiting this relationship. Finally an extension method for BCH codes is presented and this method is shown be as good as a well known method of extension in certain cases

    Aeronautical Engineering: A Continuing Bibliography with Indexes (supplement 194)

    Get PDF
    This bibliography lists 369 reports, articles and other documents introduced into the NASA scientific and technical information system in November 1985

    Recent Advances in Robust Control

    Get PDF
    Robust control has been a topic of active research in the last three decades culminating in H_2/H_\infty and \mu design methods followed by research on parametric robustness, initially motivated by Kharitonov's theorem, the extension to non-linear time delay systems, and other more recent methods. The two volumes of Recent Advances in Robust Control give a selective overview of recent theoretical developments and present selected application examples. The volumes comprise 39 contributions covering various theoretical aspects as well as different application areas. The first volume covers selected problems in the theory of robust control and its application to robotic and electromechanical systems. The second volume is dedicated to special topics in robust control and problem specific solutions. Recent Advances in Robust Control will be a valuable reference for those interested in the recent theoretical advances and for researchers working in the broad field of robotics and mechatronics
    corecore