178 research outputs found

    A Computer-Assisted Study of Red Coral Population Dynamics

    Full text link
    We consider a 13-dimensional age-structured discrete red coral population model varying with respect to a fitness parameter. Our numerical results give a bifurcation diagram of both equilibria and stable invariant curves of orbits. We observe that not only for low levels of fitness, but also for high levels of fitness, populations are extremely vulnerable, in that they spend long time periods near extinction. We then use computer-assisted proofs techniques to rigorously validate the set of regular and bifurcation fixed points that have been found numerically.Comment: 31 pages, 12 figure

    Continuation methods and disjoint equilibria

    No full text
    International audienceContinuation methods are efficient to trace branches of fixed point solutions in parameter space as long as these branches are connected. However, the computation of isolated branches of fixed points is a crucial issue and require ad-hoc techniques. We suggest a modification of the standard continuation methods to determine these isolated branches more systematically. The so-called residue continuation method is a global homotopy starting from an arbitrary disjoint initial guess. Explicit conditions ensuring the quadratic convergence of the underlying Newton-Raphson process are derived and illustrated through several examples

    Efficient and reliable algorithms for the computation of non-twist invariant circles

    Full text link
    This paper presents a methodology to study non-twist invariant circles and their bifurcations for area preserving maps, which is supported on the theoretical framework developed in Gonzalez-Enriquez et al. (Mem. Amer. Math. Soc. 227:vi+115, 2014). We recall that non-twist invariant circles are characterized not only by being invariant, but also by having some specified normal behavior. The normal behavior may endow them with extra stability properties (e.g., against external noise), and hence, they appear as design goals in some applications, e.g., in plasma physics, astrodynamics and oceanography. The methodology leads to efficient algorithms to compute and continue, with respect to parameters, non-twist invariant circles. The algorithms are quadratically convergent and, when implemented using FFT, have low storage requirement and low operations count per step. Furthermore, the algorithms are backed up by rigorous a posteriori theorems, proved and discussed in detail in Gonzalez-Enriquez et al. (Mem. Amer. Math. Soc. 227:vi+115, 2014), which give sufficient conditions guaranteeing the existence of a true non-twist invariant circle, provided an approximate invariant circle is known. Hence, one can compute confidently even very close to breakdown. With some extra effort, the calculations could be turned into computer-assisted proofs, see Figueras et al. (Found. Comput. Math. 17:1123-1193, 2017) for examples of the latter. The algorithms are also guaranteed to converge up to the breakdown of the invariant circles, and then, they are suitable to compute regions of parameters where the non-twist invariant circles exist. The calculations involved in the computation of the boundary of these regions are very robust, and they do not require symmetries and can run without continuous manual adjustments, largely improving methods based on the computation of very long period periodic orbits to approximate invariant circles. This paper contains a detailed description of our algorithms, the corresponding implementation and some numerical results, obtained by running the computer programs. In particular, we include calculations for two-dimensional parameter regions where non-twist invariant circles (with a prescribed frequency) exist. Indeed, we present systematic results in systems that do not contain symmetry lines, which seem to be unaccessible for previous methods. These numerical explorations lead to some open questions, also included here

    pde2path - A Matlab package for continuation and bifurcation in 2D elliptic systems

    Full text link
    pde2path is a free and easy to use Matlab continuation/bifurcation package for elliptic systems of PDEs with arbitrary many components, on general two dimensional domains, and with rather general boundary conditions. The package is based on the FEM of the Matlab pdetoolbox, and is explained by a number of examples, including Bratu's problem, the Schnakenberg model, Rayleigh-Benard convection, and von Karman plate equations. These serve as templates to study new problems, for which the user has to provide, via Matlab function files, a description of the geometry, the boundary conditions, the coefficients of the PDE, and a rough initial guess of a solution. The basic algorithm is a one parameter arclength continuation with optional bifurcation detection and branch-switching. Stability calculations, error control and mesh-handling, and some elementary time-integration for the associated parabolic problem are also supported. The continuation, branch-switching, plotting etc are performed via Matlab command-line function calls guided by the AUTO style. The software can be downloaded from www.staff.uni-oldenburg.de/hannes.uecker/pde2path, where also an online documentation of the software is provided such that in this paper we focus more on the mathematics and the example systems
    • …
    corecore