20,235 research outputs found

    Cooperative Adaptive Control for Cloud-Based Robotics

    Full text link
    This paper studies collaboration through the cloud in the context of cooperative adaptive control for robot manipulators. We first consider the case of multiple robots manipulating a common object through synchronous centralized update laws to identify unknown inertial parameters. Through this development, we introduce a notion of Collective Sufficient Richness, wherein parameter convergence can be enabled through teamwork in the group. The introduction of this property and the analysis of stable adaptive controllers that benefit from it constitute the main new contributions of this work. Building on this original example, we then consider decentralized update laws, time-varying network topologies, and the influence of communication delays on this process. Perhaps surprisingly, these nonidealized networked conditions inherit the same benefits of convergence being determined through collective effects for the group. Simple simulations of a planar manipulator identifying an unknown load are provided to illustrate the central idea and benefits of Collective Sufficient Richness.Comment: ICRA 201

    Learning theories reveal loss of pancreatic electrical connectivity in diabetes as an adaptive response

    Get PDF
    Cells of almost all solid tissues are connected with gap junctions which permit the direct transfer of ions and small molecules, integral to regulating coordinated function in the tissue. The pancreatic islets of Langerhans are responsible for secreting the hormone insulin in response to glucose stimulation. Gap junctions are the only electrical contacts between the beta-cells in the tissue of these excitable islets. It is generally believed that they are responsible for synchrony of the membrane voltage oscillations among beta-cells, and thereby pulsatility of insulin secretion. Most attempts to understand connectivity in islets are often interpreted, bottom-up, in terms of measurements of gap junctional conductance. This does not, however explain systematic changes, such as a diminished junctional conductance in type 2 diabetes. We attempt to address this deficit via the model presented here, which is a learning theory of gap junctional adaptation derived with analogy to neural systems. Here, gap junctions are modelled as bonds in a beta-cell network, that are altered according to homeostatic rules of plasticity. Our analysis reveals that it is nearly impossible to view gap junctions as homogeneous across a tissue. A modified view that accommodates heterogeneity of junction strengths in the islet can explain why, for example, a loss of gap junction conductance in diabetes is necessary for an increase in plasma insulin levels following hyperglycemia.Comment: 15 pages, 5 figures. To appear in PLoS One (2013

    Distributed Graph Automata and Verification of Distributed Algorithms

    Full text link
    Combining ideas from distributed algorithms and alternating automata, we introduce a new class of finite graph automata that recognize precisely the languages of finite graphs definable in monadic second-order logic. By restricting transitions to be nondeterministic or deterministic, we also obtain two strictly weaker variants of our automata for which the emptiness problem is decidable. As an application, we suggest how suitable graph automata might be useful in formal verification of distributed algorithms, using Floyd-Hoare logic.Comment: 26 pages, 6 figures, includes a condensed version of the author's Master's thesis arXiv:1404.6503. (This version of the article (v2) is identical to the previous one (v1), except for minor changes in phrasing.

    A Coordinate Descent Primal-Dual Algorithm and Application to Distributed Asynchronous Optimization

    Get PDF
    Based on the idea of randomized coordinate descent of α\alpha-averaged operators, a randomized primal-dual optimization algorithm is introduced, where a random subset of coordinates is updated at each iteration. The algorithm builds upon a variant of a recent (deterministic) algorithm proposed by V\~u and Condat that includes the well known ADMM as a particular case. The obtained algorithm is used to solve asynchronously a distributed optimization problem. A network of agents, each having a separate cost function containing a differentiable term, seek to find a consensus on the minimum of the aggregate objective. The method yields an algorithm where at each iteration, a random subset of agents wake up, update their local estimates, exchange some data with their neighbors, and go idle. Numerical results demonstrate the attractive performance of the method. The general approach can be naturally adapted to other situations where coordinate descent convex optimization algorithms are used with a random choice of the coordinates.Comment: 10 page
    corecore