2,535 research outputs found

    Intelligent Robotics Navigation System: Problems, Methods, and Algorithm

    Get PDF
    This paper set out to supplement new studies with a brief and comprehensible review of the advanced development in the area of the navigation system, starting from a single robot, multi-robot, and swarm robots from a particular perspective by taking insights from these biological systems. The inspiration is taken from nature by observing the human and the social animal that is believed to be very beneficial for this purpose. The intelligent navigation system is developed based on an individual characteristic or a social animal biological structure. The discussion of this paper will focus on how simple agent’s structure utilizes flexible and potential outcomes in order to navigate in a productive and unorganized surrounding. The combination of the navigation system and biologically inspired approach has attracted considerable attention, which makes it an important research area in the intelligent robotic system. Overall, this paper explores the implementation, which is resulted from the simulation performed by the embodiment of robots operating in real environments

    Managing a Fleet of Autonomous Mobile Robots (AMR) using Cloud Robotics Platform

    Get PDF
    In this paper, we provide details of implementing a system for managing a fleet of autonomous mobile robots (AMR) operating in a factory or a warehouse premise. While the robots are themselves autonomous in its motion and obstacle avoidance capability, the target destination for each robot is provided by a global planner. The global planner and the ground vehicles (robots) constitute a multi agent system (MAS) which communicate with each other over a wireless network. Three different approaches are explored for implementation. The first two approaches make use of the distributed computing based Networked Robotics architecture and communication framework of Robot Operating System (ROS) itself while the third approach uses Rapyuta Cloud Robotics framework for this implementation. The comparative performance of these approaches are analyzed through simulation as well as real world experiment with actual robots. These analyses provide an in-depth understanding of the inner working of the Cloud Robotics Platform in contrast to the usual ROS framework. The insight gained through this exercise will be valuable for students as well as practicing engineers interested in implementing similar systems else where. In the process, we also identify few critical limitations of the current Rapyuta platform and provide suggestions to overcome them.Comment: 14 pages, 15 figures, journal pape

    Teaching Software Engineering through Robotics

    Full text link
    This paper presents a newly-developed robotics programming course and reports the initial results of software engineering education in robotics context. Robotics programming, as a multidisciplinary course, puts equal emphasis on software engineering and robotics. It teaches students proper software engineering -- in particular, modularity and documentation -- by having them implement four core robotics algorithms for an educational robot. To evaluate the effect of software engineering education in robotics context, we analyze pre- and post-class survey data and the four assignments our students completed for the course. The analysis suggests that the students acquired an understanding of software engineering techniques and principles

    Robot Collaboration for Simultaneous Map Building and Localization

    Get PDF

    Real-Time GPS-Alternative Navigation Using Commodity Hardware

    Get PDF
    Modern navigation systems can use the Global Positioning System (GPS) to accurately determine position with precision in some cases bordering on millimeters. Unfortunately, GPS technology is susceptible to jamming, interception, and unavailability indoors or underground. There are several navigation techniques that can be used to navigate during times of GPS unavailability, but there are very few that result in GPS-level precision. One method of achieving high precision navigation without GPS is to fuse data obtained from multiple sensors. This thesis explores the fusion of imaging and inertial sensors and implements them in a real-time system that mimics human navigation. In addition, programmable graphics processing unit technology is leveraged to perform stream-based image processing using a computer\u27s video card. The resulting system can perform complex mathematical computations in a fraction of the time those same operations would take on a CPU-based platform. The resulting system is an adaptable, portable, inexpensive and self-contained software and hardware platform, which paves the way for advances in autonomous navigation, mobile cartography, and artificial intelligence
    • …
    corecore