2,467 research outputs found

    Dynamics of the Orthoglide parallel robot

    Get PDF
    Recursive matrix relations for kinematics and dynamics of the Orthoglide parallel robot having three concurrent prismatic actuators are established in this paper. These are arranged according to the Cartesian coordinate system with fixed orientation, which means that the actuating directions are normal to each other. Three identical legs connecting to the moving platform are located on three planes being perpendicular to each other too. Knowing the position and the translation motion of the platform, we develop the inverse kinematics problem and determine the position, velocity and acceleration of each element of the robot. Further, the principle of virtual work is used in the inverse dynamic problem. Some matrix equations offer iterative expressions and graphs for the input forces and the powers of the three actuators

    Dynamic simulation of a mobile manipulator with joint friction.

    Get PDF
    Mission criticality in disaster search and rescue robotics highlights the requirement of specialized equipment. Specialized manipulators that can be mounted on existing mobile platforms can improve rescue process. However specialized manipulators capable of lifting heavy loads are not yet available. Moreover, effect of joint friction in these manipulators requires further analysis. To address these issues, concepts of model based design and concurrent engineering are applied to develop a virtual prototype of the manipulator mechanism. Closed loop manipulator mechanism actuated by prismatic actuators is proposed herein. The mechanics model of the manipulator is presented here as a set of equations and as multibody models. Mechanistic simulation of the virtual prototype has been conducted and the results are presented. Combined friction model that comprises Coulomb, viscous and Stribeck friction is used to compute frictional forces and torques generated at each one degree of freedom translational and rotational joints. Multidisciplinary approach employed in this work improves product design cycle time for complex mechanisms. Kinematic and dynamic parameters are presented in this paper. Friction forces and torques from simulation are also presented in addition to the visual representation of the virtual prototype

    Prototyping environment for robot manipulators

    Get PDF
    Journal ArticlePrototyping is an important activity in engineering. Prototype development is a good test for checking the viability of a proposed system. Prototypes can also help in determining system parameters, ranges, or in designing better systems. We are proposing a prototyping environment for electro-mechanical systems, and we chosen a 3-link robot manipulator as an example. In Designing a robot manipulator, the interaction between several modules (S/W, VLSI, CAD, CAM, Robotics, and Control) illustrates an interdisciplinary prototyping environment that includes different types of information that are radically different but combined in a coordinated way. This environment will enable optimal and flexible design using reconfigurable links, joints, actuators, and sensors. Such an environment should have the right "mix" of software and hardware components for designing the physical parts and the controllers, and for the algorithmic control for the robot modules (kinematics, inverse kinematics, dynamics, trajectory planning, analog control and computer (digital) control). Specifying object-based communications and catalog mechanisms between the software modules, controllers, physical parts, CAD designs, and actuator and sensor components is a necessary step in the prototyping activities. In this report a framework for flexible prototyping environment for robot manipulators is proposed along with the required sub-systems and interfaces between the different components of this environment

    Robotic prototyping environment (Progress report)

    Get PDF
    Journal ArticlePrototyping is an important activity in engineering. Prototype development is a good test for checking the viability of a proposed system. Prototypes can also help in determining system parameters, ranges, or in designing better systems. The interaction between several modules (e.g., S/W, VLSI, CAD, CAM, Robotics, and Control) illustrates an interdisciplinary prototyping environment that includes radically different types of information, combined in a coordinated way. Developing an environment that enables optimal and flexible design of robot manipulators using reconfigurable links, joints, actuators, and sensors is an essential step for efficient robot design and prototyping. Such an environment should have the right "mix" of software and hardware components for designing the physical parts and the controllers, and for the algorithmic control of the robot modules (kinematics, inverse kinematics, dynamics, trajectory planning, analog control and digital computer control). Specifying object-based communications and catalog mechanisms between the software modules, controllers, physical parts, CAD designs, and actuator and sensor components is a necessary step in the prototyping activities. We propose a flexible prototyping environment for robot manipulators with the required sub-systems and interfaces between the different components of this environment

    Ground Robotic Hand Applications for the Space Program study (GRASP)

    Get PDF
    This document reports on a NASA-STDP effort to address research interests of the NASA Kennedy Space Center (KSC) through a study entitled, Ground Robotic-Hand Applications for the Space Program (GRASP). The primary objective of the GRASP study was to identify beneficial applications of specialized end-effectors and robotic hand devices for automating any ground operations which are performed at the Kennedy Space Center. Thus, operations for expendable vehicles, the Space Shuttle and its components, and all payloads were included in the study. Typical benefits of automating operations, or augmenting human operators performing physical tasks, include: reduced costs; enhanced safety and reliability; and reduced processing turnaround time

    Concurrent engineering and robot prototyping

    Get PDF
    Journal ArticleThis report addresses the theoretical basis for building a prototyping environment for electromechanical systems using concurrent engineering approach. In Designing a robot manipulator, as an example of electro-mechanical systems, the interaction between several modules (S/W, VLSI, CAD, CAM, Robotics, and Control) illustrates an interdisciplinary prototyping environment that includes different types of information that are radically different but combined in a coordinated way. We propose an interface layer that facilitates the communication between the different systems involved in the design and manufacturing process, and set the protocols that enable the interaction between these heterogeneous systems to take place

    Prototyping environment for robot manipulators

    Get PDF
    Journal ArticleDeveloping an environment that enables optimal and flexible design of robot manipulators using reconfigurable links, joints, actuators, and sensors is an essential step for efficient robot design and prototyping. Such an environment should have the right "mix" of software and hardware components for designing the physical parts and the controllers, and for the algorithmic control of the robot modules (kinematics, inverse kinematics, dynamics, trajectory planning, analog control and digital computer control). Specifying object-based communications and catalog mechanisms between the software modules, controllers, physical parts, CAD designs, and actuator and sensor components is a necessary step in the prototyping activities. In this paper, We propose a flexible prototyping environment for robot manipulators with the required subsystems and interfaces between the different components of this environment

    Robot manipulator prototyping (Complete Design Review)

    Get PDF
    Journal ArticlePrototyping is an important activity in engineering. Prototype development is a good test for checking the viability of a proposed system. Prototypes can also help in determining system parameters, ranges, or in designing better systems. The interaction between several modules (e.g., S/W, VLSI, CAD, CAM, Robotics, and Control) illustrates an interdisciplinary prototyping environment that includes radically different types of information, combined in a coordinated way. Developing an environment that enables optimal and flexible design of robot manipulators using reconfigurable links, joints, actuators, and sensors is an essential step for efficient robot design and prototyping. Such an environment should have the right "mix" of software and hardware components for designing the physical parts and the controllers, and for the algorithmic control of the robot modules (kinematics, inverse kinematics, dynamics, trajectory planning, analog control and digital computer control). Specifying object-based communications and catalog mechanisms between the software modules, controllers, physical parts, CAD designs, and actuator and sensor components is a necessary step in the prototyping activities. We propose a flexible prototyping environment for robot manipulators with the required subsystems and interfaces between the different components of this environment

    Aerospace medicine and biology: A continuing bibliography with indexes, supplement 218, April 1981

    Get PDF
    This bibliography lists 161 reports, articles, and other documents introduced into the NASA scientific and technical information system in March 1981
    corecore