23,238 research outputs found

    Ground Robotic Hand Applications for the Space Program study (GRASP)

    Get PDF
    This document reports on a NASA-STDP effort to address research interests of the NASA Kennedy Space Center (KSC) through a study entitled, Ground Robotic-Hand Applications for the Space Program (GRASP). The primary objective of the GRASP study was to identify beneficial applications of specialized end-effectors and robotic hand devices for automating any ground operations which are performed at the Kennedy Space Center. Thus, operations for expendable vehicles, the Space Shuttle and its components, and all payloads were included in the study. Typical benefits of automating operations, or augmenting human operators performing physical tasks, include: reduced costs; enhanced safety and reliability; and reduced processing turnaround time

    The structured phase of concurrency

    Get PDF
    This extended abstract summarizes the state-of-the-art solution to the structuring problem for models that describe existing real world or envisioned processes. Special attention is devoted to models that allow for the true concurrency semantics. Given a model of a process, the structuring problem deals with answering the question of whether there exists another model that describes the process and is solely composed of structured patterns, such as sequence, selection, option for simultaneous execution, and iteration. Methods and techniques for structuring developed by academia as well as products and standards proposed by industry are discussed. Expectations and recommendations on the future advancements of the structuring problem are suggested

    Parallel Architectures for Planetary Exploration Requirements (PAPER)

    Get PDF
    The Parallel Architectures for Planetary Exploration Requirements (PAPER) project is essentially research oriented towards technology insertion issues for NASA's unmanned planetary probes. It was initiated to complement and augment the long-term efforts for space exploration with particular reference to NASA/LaRC's (NASA Langley Research Center) research needs for planetary exploration missions of the mid and late 1990s. The requirements for space missions as given in the somewhat dated Advanced Information Processing Systems (AIPS) requirements document are contrasted with the new requirements from JPL/Caltech involving sensor data capture and scene analysis. It is shown that more stringent requirements have arisen as a result of technological advancements. Two possible architectures, the AIPS Proof of Concept (POC) configuration and the MAX Fault-tolerant dataflow multiprocessor, were evaluated. The main observation was that the AIPS design is biased towards fault tolerance and may not be an ideal architecture for planetary and deep space probes due to high cost and complexity. The MAX concepts appears to be a promising candidate, except that more detailed information is required. The feasibility for adding neural computation capability to this architecture needs to be studied. Key impact issues for architectural design of computing systems meant for planetary missions were also identified

    Handling Data-Based Concurrency in Context-Aware Service Protocols

    Get PDF
    Dependency analysis is a technique to identify and determine data dependencies between service protocols. Protocols evolving concurrently in the service composition need to impose an order in their execution if there exist data dependencies. In this work, we describe a model to formalise context-aware service protocols. We also present a composition language to handle dynamically the concurrent execution of protocols. This language addresses data dependency issues among several protocols concurrently executed on the same user device, using mechanisms based on data semantic matching. Our approach aims at assisting the user in establishing priorities between these dependencies, avoiding the occurrence of deadlock situations. Nevertheless, this process is error-prone, since it requires human intervention. Therefore, we also propose verification techniques to automatically detect possible inconsistencies specified by the user while building the data dependency set. Our approach is supported by a prototype tool we have implemented.Comment: In Proceedings FOCLASA 2010, arXiv:1007.499
    • …
    corecore