20,499 research outputs found

    Deriving Inverse Operators for Modal Logic

    Get PDF
    International audienceSpatial constraint systems are algebraic structures from concurrent constraint programming to specify spatial and epistemic behavior in multi-agent systems. We shall use spatial constraint systems to give an abstract characterization of the notion of normality in modal logic and to derive right inverse/reverse operators for modal languages. In particular, we shall identify the weakest condition for the existence of right inverses and show that the abstract notion of normality corresponds to the preservation of finite suprema. We shall apply our results to existing modal languages such as the weakest normal modal logic, Hennessy-Milner logic, and linear-time temporal logic. We shall discuss our results in the context of modal concepts such as bisimilarity and inconsistency invariance

    The CIAO Multi-Dialect Compiler and System: An Experimentation Workbench for Future (C)LP Systems

    Full text link
    CIAO is an advanced programming environment supporting Logic and Constraint programming. It offers a simple concurrent kernel on top of which declarative and non-declarative extensions are added via librarles. Librarles are available for supporting the ISOProlog standard, several constraint domains, functional and higher order programming, concurrent and distributed programming, internet programming, and others. The source language allows declaring properties of predicates via assertions, including types and modes. Such properties are checked at compile-time or at run-time. The compiler and system architecture are designed to natively support modular global analysis, with the two objectives of proving properties in assertions and performing program optimizations, including transparently exploiting parallelism in programs. The purpose of this paper is to report on recent progress made in the context of the CIAO system, with special emphasis on the capabilities of the compiler, the techniques used for supporting such capabilities, and the results in the áreas of program analysis and transformation already obtained with the system

    An Effective Fixpoint Semantics for Linear Logic Programs

    Full text link
    In this paper we investigate the theoretical foundation of a new bottom-up semantics for linear logic programs, and more precisely for the fragment of LinLog that consists of the language LO enriched with the constant 1. We use constraints to symbolically and finitely represent possibly infinite collections of provable goals. We define a fixpoint semantics based on a new operator in the style of Tp working over constraints. An application of the fixpoint operator can be computed algorithmically. As sufficient conditions for termination, we show that the fixpoint computation is guaranteed to converge for propositional LO. To our knowledge, this is the first attempt to define an effective fixpoint semantics for linear logic programs. As an application of our framework, we also present a formal investigation of the relations between LO and Disjunctive Logic Programming. Using an approach based on abstract interpretation, we show that DLP fixpoint semantics can be viewed as an abstraction of our semantics for LO. We prove that the resulting abstraction is correct and complete for an interesting class of LO programs encoding Petri Nets.Comment: 39 pages, 5 figures. To appear in Theory and Practice of Logic Programmin

    A Linear Logic Programming Language for Concurrent Programming over Graph Structures

    Full text link
    We have designed a new logic programming language called LM (Linear Meld) for programming graph-based algorithms in a declarative fashion. Our language is based on linear logic, an expressive logical system where logical facts can be consumed. Because LM integrates both classical and linear logic, LM tends to be more expressive than other logic programming languages. LM programs are naturally concurrent because facts are partitioned by nodes of a graph data structure. Computation is performed at the node level while communication happens between connected nodes. In this paper, we present the syntax and operational semantics of our language and illustrate its use through a number of examples.Comment: ICLP 2014, TPLP 201

    A Simulation Tool for tccp Programs

    Get PDF
    The Timed Concurrent Constraint Language tccp is a declarative synchronous concurrent language, particularly suitable for modelling reactive systems. In tccp, agents communicate and synchronise through a global constraint store. It supports a notion of discrete time that allows all non-blocked agents to proceed with their execution simultaneously. In this paper, we present a modular architecture for the simulation of tccp programs. The tool comprises three main components. First, a set of basic abstract instructions able to model the tccp agent behaviour, the memory model needed to manage the active agents and the state of the store during the execution. Second, the agent interpreter that executes the instructions of the current agent iteratively and calculates the new agents to be executed at the next time instant. Finally, the constraint solver components which are the modules that deal with constraints. In this paper, we describe the implementation of these components and present an example of a real system modelled in tccp.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
    corecore