1,352 research outputs found

    Concurrent Transaction Frame Logic Formal Semantics for UML Activity and Class Diagrams

    Get PDF

    The Impact of Petri Nets on System-of-Systems Engineering

    Get PDF
    The successful engineering of a large-scale system-of-systems project towards deterministic behaviour depends on integrating autonomous components using international communications standards in accordance with dynamic requirements. To-date, their engineering has been unsuccessful: no combination of top-down and bottom-up engineering perspectives is adopted, and information exchange protocol and interfaces between components are not being precisely specified. Various approaches such as modelling, and architecture frameworks make positive contributions to system-of-systems specification but their successful implementation is still a problem. One of the most popular modelling notations available for specifying systems, UML, is intuitive and graphical but also ambiguous and imprecise. Supplying a range of diagrams to represent a system under development, UML lacks simulation and exhaustive verification capability. This shortfall in UML has received little attention in the context of system-of-systems and there are two major research issues: 1. Where the dynamic, behavioural diagrams of UML can and cannot be used to model and analyse system-of-systems 2. Determining how Petri nets can be used to improve the specification and analysis of the dynamic model of a system-of-systems specified using UML This thesis presents the strengths and weaknesses of Petri nets in relation to the specification of system-of-systems and shows how Petri net models can be used instead of conventional UML Activity Diagrams. The model of the system-of-systems can then be analysed and verified using Petri net theory. The Petri net formalism of behaviour is demonstrated using two case studies from the military domain. The first case study uses Petri nets to specify and analyse a close air support mission. This case study concludes by indicating the strengths, weaknesses, and shortfalls of the proposed formalism in system-of-systems specification. The second case study considers specification of a military exchange network parameters problem and the results are compared with the strengths and weaknesses identified in the first case study. Finally, the results of the research are formulated in the form of a Petri net enhancement to UML (mapping existing activity diagram elements to Petri net elements) to meet the needs of system-of-systems specification, verification and validation

    Workshop on Modelling of Objects, Components, and Agents, Aarhus, Denmark, August 27-28, 2001

    Get PDF
    This booklet contains the proceedings of the workshop Modelling of Objects, Components, and Agents (MOCA'01), August 27-28, 2001. The workshop is organised by the CPN group at the Department of Computer Science, University of Aarhus, Denmark and the "Theoretical Foundations of Computer Science" Group at the University of Hamburg, Germany. The papers are also available in electronic form via the web pages: http://www.daimi.au.dk/CPnets/workshop01

    Modelling learning behaviour of intelligent agents using UML 2.0

    Get PDF
    This thesis aims to explore and demonstrate the ability of the new standard of structural and behavioural components in Unified Modelling Language (UML 2.0 / 2004) to model the learning behaviour of Intelligent Agents. The thesis adopts the research direction that views agent-oriented systems as an extension to object-oriented systems. In view of the fact that UML has been the de facto standard for modelling object-oriented systems, this thesis concentrates on exploring such modelling potential with Intelligent Agent-oriented systems. Intelligent Agents are Agents that have the capability to learn and reach agreement with other Agents or users. The research focuses on modelling the learning behaviour of a single Intelligent Agent, as it is the core of multi-agent systems. During the writing of the thesis, the only work done to use UML 2.0 to model structural components of Agents was from the Foundation for Intelligent Physical Agent (FIPA). The research builds upon, explores, and utilises this work and provides further development to model the structural components of learning behaviour of Intelligent Agents. The research also shows the ability of UML version 2.0 behaviour diagrams, namely activity diagrams and sequence diagrams, to model the learning behaviour of Intelligent Agents that use learning from observation and discovery as well as learning from examples of strategies. The research also evaluates if UML 2.0 state machine diagrams can model specific reinforcement learning algorithms, namely dynamic programming, Monte Carlo, and temporal difference algorithms. The thesis includes user guides of UML 2.0 activity, sequence, and state machine diagrams to allow researchers in agent-oriented systems to use the UML 2.0 diagrams in modelling the learning components of Intelligent Agents. The capacity for learning is a crucial feature of Intelligent Agents. The research identifies different learning components required to model the learning behaviour of Intelligent Agents such as learning goals, learning strategies, and learning feedback methods. In recent years, the Agent-oriented research has been geared towards the agency dimension of Intelligent Agents. Thus, there is a need to conduct more research on the intelligence dimension of Intelligent Agents, such as negotiation and argumentation skills. The research shows that behavioural components of UML 2.0 are capable of modelling the learning behaviour of Intelligent Agents while structural components of UML 2.0 need extension to cover structural requirements of Agents and Intelligent Agents. UML 2.0 has an extension mechanism to fulfil Agents and Intelligent Agents for such requirements. This thesis will lead to increasing interest in the intelligence dimension rather than the agency dimension of Intelligent Agents, and pave the way for objectoriented methodologies to shift more easily to paradigms of Intelligent Agent-oriented systems.The British Council, the University of Plymouth and the Arab-British Chamber Charitable Foundation

    Software framework for the development of context-aware reconfigurable systems

    Get PDF
    In this project we propose a new software framework for the development of context-aware and secure controlling software of distributed reconfigurable systems. Context-awareness is a key feature allowing the adaptation of systems behaviour according to the changing environment. We introduce a new definition of the term “context” for reconfigurable systems then we define a new context modelling and reasoning approach. Afterwards, we define a meta-model of context-aware reconfigurable applications that paves the way to the proposed framework. The proposed framework has a three-layer architecture: reconfiguration, context control, and services layer, where each layer has its well-defined role. We define also a new secure conversation protocol between distributed trustless parts based on the blockchain technology as well as the elliptic curve cryptography. To get better correctness and deployment guarantees of applications models in early development stages, we propose a new UML profile called GR-UML to add new semantics allowing the modelling of probabilistic scenarios running under memory and energy constraints, then we propose a methodology using transformations between the GR-UML, the GR-TNCES Petri nets formalism, and the IEC 61499 function blocks. A software tool implementing the methodology concepts is developed. To show the suitability of the mentioned contributions two case studies (baggage handling system and microgrids) are considered.In diesem Projekt schlagen wir ein Framework fĂŒr die Entwicklung von kontextbewussten, sicheren Anwendungen von verteilten rekonfigurierbaren Systemen vor. Kontextbewusstheit ist eine SchlĂŒsseleigenschaft, die die Anpassung des Systemverhaltens an die sich Ă€ndernde Umgebung ermöglicht. Wir fĂŒhren eine Definition des Begriffs ``Kontext" fĂŒr rekonfigurierbare Systeme ein und definieren dann einen Kontextmodellierungs- und Reasoning-Ansatz. Danach definieren wir ein Metamodell fĂŒr kontextbewusste rekonfigurierbare Anwendungen, das den Weg zum vorgeschlagenen Framework ebnet. Das Framework hat eine dreischichtige Architektur: Rekonfigurations-, Kontextkontroll- und Dienste-Schicht, wobei jede Schicht ihre wohldefinierte Rolle hat. Wir definieren auch ein sicheres Konversationsprotokoll zwischen verteilten Teilen, das auf der Blockchain-Technologie sowie der elliptischen Kurven-Kryptographie basiert. Um bessere Korrektheits- und Einsatzgarantien fĂŒr Anwendungsmodelle zu erhalten, schlagen wir ein UML-Profil namens GR-UML vor, um Semantik umzufassen, die die Modellierung probabilistischer Szenarien unter Speicher- und EnergiebeschrĂ€nkungen ermöglicht. Dann schlagen wir eine Methodik vor, die Transformationen zwischen GR-UML, dem GR-TNCES-Petrinetz-Formalismus und den IEC 61499-Funktionsblöcken verwendet. Es wird ein Software entwickelt, das die Konzepte der Methodik implementiert. Um die Eignung der genannten BeitrĂ€ge zu zeigen, werden zwei Fallstudien betrachtet

    Early aspects: aspect-oriented requirements engineering and architecture design

    Get PDF
    This paper reports on the third Early Aspects: Aspect-Oriented Requirements Engineering and Architecture Design Workshop, which has been held in Lancaster, UK, on March 21, 2004. The workshop included a presentation session and working sessions in which the particular topics on early aspects were discussed. The primary goal of the workshop was to focus on challenges to defining methodical software development processes for aspects from early on in the software life cycle and explore the potential of proposed methods and techniques to scale up to industrial applications

    Analysis and Verification of Service Contracts

    Get PDF
    • 

    corecore