43 research outputs found

    Machine Learning Approaches for Semantic Segmentation on Partly-Annotated Medical Images

    Get PDF
    Semantic segmentation of medical images plays a crucial role in assisting medical practitioners in providing accurate and swift diagnoses; nevertheless, deep neural networks require extensive labelled data to learn and generalise appropriately. This is a major issue in medical imagery because most of the datasets are not fully annotated. Training models with partly-annotated datasets generate plenty of predictions that belong to correct unannotated areas that are categorised as false positives; as a result, standard segmentation metrics and objective functions do not work correctly, affecting the overall performance of the models. In this thesis, the semantic segmentation of partly-annotated medical datasets is extensively and thoroughly studied. The general objective is to improve the segmentation results of medical images via innovative supervised and semi-supervised approaches. The main contributions of this work are the following. Firstly, a new metric, specifically designed for this kind of dataset, can provide a reliable score to partly-annotated datasets with positive expert feedback in their generated predictions by exploiting all the confusion matrix values except the false positives. Secondly, an innovative approach to generating better pseudo-labels when applying co-training with the disagreement selection strategy. This method expands the pixels in disagreement utilising the combined predictions as a guide. Thirdly, original attention mechanisms based on disagreement are designed for two cases: intra-model and inter-model. These attention modules leverage the disagreement between layers (from the same or different model instances) to enhance the overall learning process and generalisation of the models. Lastly, innovative deep supervision methods improve the segmentation results by training neural networks one subnetwork at a time following the order of the supervision branches. The methods are thoroughly evaluated on several histopathological datasets showing significant improvements

    Proactive Adaptation in Self-Organizing Task-based Runtime Systems for Different Computing Classes

    Get PDF
    Moderne Computersysteme bieten Anwendern und Anwendungsentwicklern ein hohes Maß an ParallelitĂ€t und HeterogenitĂ€t. Die effiziente Nutzung dieser Systeme erfordert jedoch tiefgreifende Kenntnisse, z.B. der darunterliegenden Hardware-Plattform und den notwendigen Programmiermodellen, und umfangreiche Arbeit des Entwicklers. In dieser Thesis bezieht sich die effiziente Nutzung auf die GesamtausfĂŒhrungszeit der Anwendungen, den Energieverbrauch des Systems, die maximale Temperatur der Verarbeitungseinheiten und die ZuverlĂ€ssigkeit des Systems. Neben den verschiedenen Optimierungszielen muss ein Anwendungsentwickler auch die spezifischen EinschrĂ€nkungen und Randbedingungen des Systems berĂŒcksichtigen, wie z. B. Deadlines oder Sicherheitsgarantien, die mit bestimmten Anwendungsbereichen einhergehen. Diese KomplexitĂ€t heterogener Systeme macht es unmöglich, alle potenziellen SystemzustĂ€nde und UmwelteinflĂŒsse, die zur Laufzeit auftreten können, vorherzusagen. Die System- und Anwendungsentwickler sind somit nicht in der Lage, zur Entwurfszeit festzulegen, wie das System und die Anwendungen in allen möglichen Situationen reagieren sollen. Daher ist es notwendig, die Systeme zur Laufzeit der aktuellen Situation anzupassen, um ihr Verhalten entsprechend zu optimieren. In eingebetteten Systemen mit begrenzten KĂŒhlkapazitĂ€ten muss z.B. bei Erreichen einer bestimmten Temperaturschwelle eine Lastverteilung vorgenommen, die Frequenz verringert oder Verarbeitungseinheiten abgeschaltet werden, um die WĂ€rmeentwicklung zu reduzieren. Normalerweise reicht es aber nicht aus, einfach nur auf einen ungĂŒnstigen Systemzustand zu reagieren. Das Ziel sollte darin bestehen, ungĂŒnstige oder fehlerhafte SystemzustĂ€nde vor dem Auftreten zu vermeiden, um die Notwendigkeit des Aufrufs von Notfallfunktionen zu verringern und die Benutzerfreundlichkeit zu verbessern. Anstatt beispielsweise die WĂ€rmeentwicklung durch eine Neuverteilung der Anwendungen zu reduzieren, könnten proaktive Mechanismen kritische Temperaturen bereits im Vorfeld vermeiden, indem sie bestimmte unkritische Aufgaben verzögern oder deren Genauigkeit oder QoS verringern. Auf diese Weise wird die Systemlast reduziert, bevor ein kritischer Punkt erreicht wird. Lösungen des aktuellen Stands der Technik wie einheitliche Programmiersprachen oder Laufzeitsysteme adressieren einige der oben genannten Herausforderungen, jedoch existiert kein Ansatz, der in der Lage ist, eine Optimierung mehrerer sich widersprechender Zielfunktionen dynamisch und vor allem proaktiv durchzufĂŒhren. Ein Konzept, das diese komplexe Aufgabe fĂŒr den Entwickler ĂŒbernimmt und eine Möglichkeit zur dynamischen und proaktiven Anpassung an VerĂ€nderungen bietet, ist die Selbstorganisation. Selbstorganisation ist jedoch definiert als ein Prozess ohne externe Kontrolle oder Steuerung. Im Kontext der Systemoptimierung kann dies leicht zu unerwĂŒnschten Ergebnissen fĂŒhren. Ein Ansatz, der Selbstorganisation mit einem Kontrollmechanismus kombiniert, welcher auf Robustheit und WiderstandsfĂ€higkeit gegenĂŒber Ă€ußeren Störungen abzielt, ist Organic Computing. Das bestimmende Merkmal von Organic Computing ist eine Observer/Controller-Architektur. Das Konzept dieser Architektur besteht darin, den aktuellen Zustand des Systems und der Umgebung zu ĂŒberwachen, diese Daten zu analysieren und auf der Grundlage dieser Analyse Entscheidungen ĂŒber das zukĂŒnftige Systemverhalten zu treffen. Organic Computing ermöglicht es also auf der Grundlage der vergangenen und des aktuellen Zustands proaktiv Mechanismen auszuwĂ€hlen und auszulösen, die das System optimieren und unerwĂŒnschte ZustĂ€nde vermeiden. Um die Vorteile des Organic Computings auf moderne heterogene Systeme zu ĂŒbertragen, kombiniere ich den Organic Computing-Ansatz mit einem Laufzeitsystem. Laufzeitsysteme sind ein vielversprechender Kandidat fĂŒr die Umsetzung des Organic Computing-Ansatzes, da sie bereits die AusfĂŒhrung von Anwendungen ĂŒberwachen und steuern. Insbesondere betrachte und bearbeite ich in dieser Dissertation die folgenden Forschungsthemen, indem ich die Konzepte des Organic Computings und der Laufzeitsysteme kombiniere: ‱ Erfassen des aktuellen Systemzustands durch Überwachung von Sensoren und Performance Countern ‱ Vorhersage zukĂŒnftiger SystemzustĂ€nde durch Analyse des vergangenen Verhaltens ‱ Nutzung von Zustandsinformationen zur proaktiven Anpassung des Systems Ich erweitere das Thema der Erfassung von SystemzustĂ€nden auf zwei Arten. ZunĂ€chst fĂŒhre ich eine neuartige heuristische Metrik zur Berechnung der ZuverlĂ€ssigkeit einer Verarbeitungseinheit ein, die auf symptombasierter Fehlererkennung basiert. Symptombasierte Fehlererkennung ist eine leichtgewichtige Methode zur dynamischen Erkennung von soften Hardware-Fehlern durch Überwachung des AusfĂŒhrungsverhaltens mit Performance Countern. Die dynamische Erkennung von Fehlern ermöglicht dann die Berechnung einer heuristischen Fehlerrate einer Verarbeitungseinheit in einem bestimmten Zeitfenster. Die Fehlerrate wird verwendet, um die Anzahl der erforderlichen AusfĂŒhrungen einer Anwendung zu berechnen, um eine bestimmte ErgebniszuverlĂ€ssigkeit, also eine Mindestwahrscheinlichkeit fĂŒr ein korrektes Ergebnis, zu gewĂ€hrleisten. Ein wichtiger Aspekt der Zustandserfassung ist die Minimierung des entstehenden Overheads. Ich verringere die Anzahl der fĂŒr OpenMP-Tasks notwendigen Profiling-DurchlĂ€ufe durch Thread-Interpolation und ÜberprĂŒfungen des Skalierungsverhaltens. ZusĂ€tzlich untersuche ich die Vorhersage von OpenCL Task-AusfĂŒhrungszeiten. Die PrĂ€diktoren der AusfĂŒhrungszeiten werden mit verschiedenen maschinellen Lernalgorithmen trainiert. Als Input werden Profile der Kernel verwendet, die durch statische Codeanalyse erstellt wurden. Um in dieser Dissertation zukĂŒnftige SystemzustĂ€nde vorherzusagen, sollen Anwendungen vorausgesagt werden, die in naher Zukunft im System vorkommen werden. In Kombination mit der AusfĂŒhrungsdatenbank ermöglicht dies die SchĂ€tzung der anstehenden Kosten, die das System zu bewĂ€ltigen hat. In dieser Arbeit werden zwei Mechanismen zur Vorhersage von Anwendungen/Tasks entwickelt. Der erste PrĂ€diktor zielt darauf ab, neue Instanzen unabhĂ€ngiger Tasks vorherzusagen. Der zweite Mechanismus betrachtet AusfĂŒhrungsmuster abhĂ€ngiger Anwendungen und sagt auf dieser Grundlage zukĂŒnftig auftretende Anwendungen vorher. Beide Mechanismen verwenden eine Vorhersagetabelle, die auf Markov-PrĂ€diktoren und dem Abgleich von Mustern basiert. In dieser Arbeit wird das Wissen, das durch die SystemĂŒberwachung und die Vorhersage zukĂŒnftiger Anwendungen gewonnen wird, verwendet, um die Optimierungsziele des Systems proaktiv in Einklang zu bringen und zu gewichten. Dies geschieht durch eine Reihe von Regeln, die eine Systemzustandsbeschreibung, bestehend aus dem aktuellen Zustand, Vorhersagen und Randbedingungen bzw. BeschrĂ€nkungen, auf einen Vektor aus Gewichten abbilden. Zum Erlernen der Regelmenge wird ein Extended Classifer System (XCS) eingesetzt. Das XCS ist in eine hierarchische Architektur eingebettet, die nach den Prinzipien des Organic Computing entworfen wurde. Eine wichtige Designentscheidung ist dabei die Auslagerung der Erstellung neuer Regeln an einen Offline-Algorithmus, der einen Simulator nutzt und parallel zum normalen Systemablauf ausgefĂŒhrt wird. Dadurch wird sichergestellt, dass keine ungetesteten Regeln, deren Auswirkungen noch nicht bekannt sind, dem laufenden System hinzugefĂŒgt werden. Die sich daraus ergebenden Gewichte werden schließlich verwendet, um eine Bewertungsfunktion fĂŒr List Scheduling-Algorithmen zu erstellen. Diese Dissertation erweitert das Forschungsgebiet der Scheduling-Algorithmen durch zwei Mechanismen fĂŒr dynamisches Scheduling. Die erste Erweiterung konzentriert sich auf nicht sicherheitskritische Systeme, die PrioritĂ€ten verwenden, um die unterschiedliche Wichtigkeit von Tasks auszudrĂŒcken. Da statische PrioritĂ€ten in stark ausgelasteten Systemen zu Starvation fĂŒhren können, habe ich einen dynamischen Ageing-Mechanismus entwickelt, der dazu in der Lage ist, die PrioritĂ€ten der Tasks entsprechend der aktuellen Auslastung und ihrer Wartezeiten anzupassen. Dadurch reduziert der Mechanismus die Gesamtlaufzeit ĂŒber alle Tasks und die Wartezeit fĂŒr Tasks mit niedrigerer PrioritĂ€t. Noch ist eine große Anzahl von Anwendungen nicht dazu bereit, den hohen Grad an ParallelitĂ€t zu nutzen, den moderne Computersysteme bieten. Ein Konzept, das versucht dieses Problem zu lösen, indem es mehrere verschiedene Prozesse auf demselben Rechenknoten zur AusfĂŒhrung bringt, ist das Co-Scheduling. In dieser Dissertation stelle ich einen neuartigen Co-Scheduling-Mechanismus vor, welcher die Task-Schedules mehrerer Laufzeitsysteminstanzen optimiert, die auf demselben Rechenknoten ausgefĂŒhrt werden. Um die notwendigen Informationen zwischen den Laufzeitsysteminstanzen zu teilen, speichert der Mechanismus die Daten in Shared Memory. Sobald ein Laufzeitsystem neue Tasks in das System einfĂŒgt, prĂŒft der Mechanismus, ob die Berechnung eines neuen Schedules sinnvoll ist. Wird die Entscheidung getroffen, einen neuen Schedule zu berechnen, setzt der Mechanismus Simulated Annealing ein, um alle Tasks, die bisher noch nicht mit ihrer AusfĂŒhrung begonnen haben, neu auf AusfĂŒhrungseinheiten abzubilden. Zusammenfassend lĂ€sst sich sagen, dass diese Arbeit neuartige Mechanismen und Algorithmen sowie Erweiterungen zu verschiedenen Forschungsgebieten anbietet, um ein proaktives selbst-organisierendes System zu implementieren, das sich an neue und unbekannte Situationen anpassen kann. Dabei wird die KomplexitĂ€t fĂŒr Benutzer und Anwendungsentwickler reduziert, indem die Entscheidungsfindung in das System selbst ausgelagert wird. Gleichzeitig sorgt dieser Ansatz fĂŒr eine effiziente Nutzung der Ressourcen des Systems. Insgesamt leistet diese Arbeit die folgenden BeitrĂ€ge zur Erweiterung des Stands der Forschung: ‱ EinfĂŒhrung einer neuartigen heuristischen Metrik zur Messung der ZuverlĂ€ssigkeit von Verarbeitungseinheiten. Die Metrik basiert auf einer leichtgewichtigen Methode zur Fehlererkennung, genannt symptombasierte Fehlererkennung. Mit der symptombasierten Fehlererkennung ist es möglich, mehrere injizierte Fehlerklassen und Interferenzen, die Soft-Hardware-Fehler simulieren, sowohl auf einer CPU als auch auf einer GPU zuverlĂ€ssig zu erkennen. DarĂŒber hinaus werden diese Ergebnisse durch Welch\u27s t-Test statistisch bestĂ€tigt. ‱ Vorschlag eines Vorhersagemodells fĂŒr die AusfĂŒhrungszeit von OpenCL Kerneln, das auf statischer Code-Analyse basiert. Das Modell ist in der Lage, die schnellste Verarbeitungseinheit aus einer Menge von Verarbeitungseinheiten mit einer Genauigkeit von im schlechtesten Fall 69 %69\,\% auszuwĂ€hlen. Zum Vergleich: eine Referenzvariante, welche immer den Prozessor vorhersagt, der die meisten Kernel am schnellsten ausfĂŒhrt, erzielt eine Genauigkeit von 25 %25\,\%. Im besten Fall erreicht das Modell eine Genauigkeit von bis zu 83 %83\,\%. ‱ Bereitstellung von zwei PrĂ€diktoren fĂŒr kommende Tasks/Anwendungen. Der erste Mechanismus betrachtet unabhĂ€ngige Tasks, die stĂ€ndig neue Task-Instanzen erstellen, der zweite abhĂ€ngige Anwendungen, die AusfĂŒhrungsmuster bilden. Dabei erzielt der erste Mechanismus bei der Vorhersage der Zeitspanne zwischen zwei aufeinanderfolgenden Task-Instanzen einen maximalen\\ sMAPEsMAPE-Wert von 4,33 %4,33\,\% fĂŒr sporadische und 0,002 %0,002 \,\% fĂŒr periodische Tasks. DarĂŒber hinaus werden Tasks mit einem aperiodischen AusfĂŒhrungsschema zuverlĂ€ssig erkannt. Der zweite Mechanismus erreicht eine Genauigkeit von 77,6 %77,6 \,\% fĂŒr die Vorhersage der nĂ€chsten anstehenden Anwendung und deren Startzeit. ‱ EinfĂŒhrung einer Umsetzung eines hierarchischen Organic Computing Frameworks mit dem Anwendungsgebiet Task-Scheduling. Dieses Framework enthĂ€lt u.a. ein modifiziertes XCS, fĂŒr dessen Design und Implementierung ein neuartiger Reward-Mechanismus entwickelt wird. Der Mechanismus bedient sich dabei eines speziell fĂŒr diesen Zweck entwickelten Simulators zur Berechnung von Task-AusfĂŒhrungskosten. Das XCS bildet Beschreibungen des Systemzustands auf Gewichte zur Balancierung der Optimierungsziele des Systems ab. Diese Gewichte werden in einer Bewertungsfunktion fĂŒr List Scheduling-Algorithmen verwendet. Damit wird in einem Evaluationsszenario, welches aus einem fĂŒnfmal wiederholten Muster aus Anwendungen besteht, eine Reduzierung der Gesamtlaufzeit um 10,4 %10,4\,\% bzw. 26,7 s26,7\,s, des Energieverbrauchs um 4,7 %4,7\,\% bzw. 2061,1 J2061,1\,J und der maximalen Temperatur der GPU um 3,6 %3,6\,\% bzw. 2,7K2,7 K erzielt. Lediglich die maximale Temperatur ĂŒber alle CPU-Kerne erhöht sich um 6 %6\,\% bzw. 2,3 K2,3\,K. ‱ Entwicklung von zwei Erweiterungen zur Verbesserung des dynamischen Task-Schedulings fĂŒr einzelne und mehrere Prozesse, z.B. mehrere Laufzeitsysteminstanzen. Der erste Mechanismus, ein Ageing-Algorithmus, betrachtet nicht sicherheitskritische Systeme, welche Task-PrioritĂ€ten verwenden, um die unterschiedliche Bedeutung von Anwendungen darzustellen. Da es in solchen Anwendungsszenarien in Kombination mit hoher Systemauslastung zu Starvation kommen kann, passt der Mechanismus die Task-PrioritĂ€ten dynamisch an die aktuelle Auslastung und die Task-Wartezeiten an. Insgesamt erreicht dieser Mechanismus in zwei Bewertungsszenarien eine durchschnittliche Laufzeitverbesserung von 3,75 %3,75\,\% und 3,16 %3,16\,\% bei gleichzeitiger Reduzierung der Durchlaufzeit von Tasks mit niedrigerer PrioritĂ€t um bis zu 25,67 %25,67\,\%. Der zweite Mechanismus ermöglicht die Optimierung von Schedules mehrerer Laufzeitsysteminstanzen, die parallel auf demselben Rechenknoten ausgefĂŒhrt werden. Dieser Co-Scheduling-Ansatz verwendet Shared Memory zum Austausch von Informationen zwischen den Prozessen und Simulated Annealing zur Berechnung neuer Task-Schedules. In zwei Evaluierungsszenarien erzielt der Mechanismus durchschnittliche Laufzeitverbesserungen von 19,74 %19,74\,\% und 20,91 %20,91\,\% bzw. etwa 2,7 s2,7\,s und 3 s3\,s

    Music and Digital Media

    Get PDF
    Anthropology has neglected the study of music. Music and Digital Media shows how and why this should be redressed. It does so by enabling music to expand the horizons of digital anthropology, demonstrating how the field can build interdisciplinary links to music and sound studies, digital/media studies, and science and technology studies. Music and Digital Media is the first comparative ethnographic study of the impact of digital media on music worldwide. It offers a radical and lucid new theoretical framework for understanding digital media through music, showing that music is today where the promises and problems of the digital assume clamouring audibility. The book contains ten chapters, eight of which present comprehensive original ethnographies; they are bookended by an authoritative introduction and a comparative postlude. Five chapters address popular, folk, art and crossover musics in the global South and North, including Kenya, Argentina, India, Canada and the UK. Three chapters bring the digital experimentally to the fore, presenting pioneering ethnographies of anextra-legal peer-to-peer site and the streaming platform Spotify, a series of prominent internet-mediated music genres, and the first ethnography of a global software package, the interactive music platform Max. The book is unique in bringing ethnographic research on popular, folk, art and crossover musics from the global North and South into a comparative framework on a large scale, and creates an innovative new paradigm for comparative anthropology. It shows how music enlarges anthropology while demanding to be understood with reference to classic themes of anthropological theory. Praise for Music and Digital Media ‘Music and Digital Media is a groundbreaking update to our understandings of sound, media, digitization, and music. Truly transdisciplinary and transnational in scope, it innovates methodologically through new models for collaboration, multi-sited ethnography, and comparative work. It also offers an important defense of—and advancement of—theories of mediation.’ Jonathan Sterne, Communication Studies and Art History, McGill University 'Music and Digital Media is a nuanced exploration of the burgeoning digital music scene across both the global North and the global South. Ethnographically rich and theoretically sophisticated, this collection will become the new standard for this field.' Anna Tsing, Anthropology, University of California at Santa Cruz 'The global drama of music's digitisation elicits extreme responses – from catastrophe to piratical opportunism – but between them lie more nuanced perspectives. This timely, absolutely necessary collection applies anthropological understanding to a deliriously immersive field, bringing welcome clarity to complex processes whose impact is felt far beyond what we call music.' David Toop, London College of Communication, musician and writer ‘Spanning continents and academic disciplines, the rich ethnographies contained in Music and Digital Media makes it obligatory reading for anyone wishing to understand the complex, contradictory, and momentous effects that digitization is having on musical cultures.’ Eric Drott, Music, University of Texas, Austin ‘This superb collection, with an authoritative overview as its introduction, represents the state of the art in studies of the digitalisation of music. It is also a testament to what anthropology at its reflexive best can offer the rest of the social sciences and humanities.’ David Hesmondhalgh, Media and Communication, University of Leeds ‘This exciting volume forges new ground in the study of local conditions, institutions, and sounds of digital music in the Global South and North. The book’s planetary scope and its commitment to the “messiness” of ethnographic sites and concepts amplifies emergent configurations and meanings of music, the digital, and the aesthetic.’ Marina Peterson, Anthropology, University of Texas, Austi

    Music and Digital Media: A planetary anthropology

    Get PDF
    Anthropology has neglected the study of music. Music and Digital Media shows how and why this should be redressed. It does so by enabling music to expand the horizons of digital anthropology, demonstrating how the field can build interdisciplinary links to music and sound studies, digital/media studies, and science and technology studies. Music and Digital Media is the first comparative ethnographic study of the impact of digital media on music worldwide. It offers a radical and lucid new theoretical framework for understanding digital media through music, showing that music is today where the promises and problems of the digital assume clamouring audibility. The book contains ten chapters, eight of which present comprehensive original ethnographies; they are bookended by an authoritative introduction and a comparative postlude. Five chapters address popular, folk, art and crossover musics in the global South and North, including Kenya, Argentina, India, Canada and the UK. Three chapters bring the digital experimentally to the fore, presenting pioneering ethnographies of an extra-legal peer-to-peer site and the streaming platform Spotify, a series of prominent internet-mediated music genres, and the first ethnography of a global software package, the interactive music platform Max. The book is unique in bringing ethnographic research on popular, folk, art and crossover musics from the global North and South into a comparative framework on a large scale, and creates an innovative new paradigm for comparative anthropology. It shows how music enlarges anthropology while demanding to be understood with reference to classic themes of anthropological theory

    Computation in Complex Networks

    Get PDF
    Complex networks are one of the most challenging research focuses of disciplines, including physics, mathematics, biology, medicine, engineering, and computer science, among others. The interest in complex networks is increasingly growing, due to their ability to model several daily life systems, such as technology networks, the Internet, and communication, chemical, neural, social, political and financial networks. The Special Issue “Computation in Complex Networks" of Entropy offers a multidisciplinary view on how some complex systems behave, providing a collection of original and high-quality papers within the research fields of: ‱ Community detection ‱ Complex network modelling ‱ Complex network analysis ‱ Node classification ‱ Information spreading and control ‱ Network robustness ‱ Social networks ‱ Network medicin

    Supply Chain

    Get PDF
    Traditionally supply chain management has meant factories, assembly lines, warehouses, transportation vehicles, and time sheets. Modern supply chain management is a highly complex, multidimensional problem set with virtually endless number of variables for optimization. An Internet enabled supply chain may have just-in-time delivery, precise inventory visibility, and up-to-the-minute distribution-tracking capabilities. Technology advances have enabled supply chains to become strategic weapons that can help avoid disasters, lower costs, and make money. From internal enterprise processes to external business transactions with suppliers, transporters, channels and end-users marks the wide range of challenges researchers have to handle. The aim of this book is at revealing and illustrating this diversity in terms of scientific and theoretical fundamentals, prevailing concepts as well as current practical applications

    Semiconductor Laser Dynamics

    Get PDF
    This is a collection of 18 papers, two of which are reviews and seven are invited feature papers, that together form the Photonics Special Issue “Semiconductor Laser Dynamics: Fundamentals and Applications”, published in 2020. This collection is edited by Daan Lenstra, an internationally recognized specialist in the field for 40 years

    27th Annual European Symposium on Algorithms: ESA 2019, September 9-11, 2019, Munich/Garching, Germany

    Get PDF

    Orchestration of the neural stem cell fate by NRF2 and TAZ

    Full text link
    Tesis doctoral inédita leída en la Universidad Autónoma de Madrid, Facultad de Medicina, Departamento de Bioquímica. Fecha de lectura: 11-10-2019Neurogenesis is a multiple step process that must be tightly regulated or otherwise results in pathological events. Therefore, a deep characterization of the molecular mechanisms that control the biology of neural stem/progenitor cells (NSPCs) will provide a better understanding of the role of neurogenic niches and new therapeutic strategies for neurodegenerative diseases and brain tumours. In this thesis we have analyzed the regulation of NSCs fate by the transcription factor Nuclear factor (erythroid-derived 2)-like 2 (NRF2), which is considered a master regulator of cellular homeostasis, and the Transcriptional co-activator with PDZ-binding motif (TAZ), a major effector of the Hippo pathway. NRF2 controls the expression of a wide battery of cytoprotective genes that have a tremendous impact on physiological responses such as inflammation, senescence or metabolism. However, its relevance in neurogenesis is just starting to be unveiled. On the other hand, TAZ is a major effector of the Hippo pathway, which plays a key role in tissue homeostasis and organ size control by regulating tissue-specific stem cells. However, the implication of TAZ in neurogenesis has not been analyzed. In this study, we have identified NRF2 as a regulator of hippocampal NSCs self-renewal and differentiation. We show that genetic manipulation of NRF2 results in the modulation of NSPCs differentiation and proliferation capacity. To assess the functional relevance of NRF2 in neurogenesis under pathological conditions, we analyzed the impact of NRF2 deficiency in neurogenesis of the subgranular zone (SGZ) of the hippocampus in a mouse model of AlzheimerŽs Disease (AD). We found that NRF2 deficiency results in an accelerated loss of NSCs, loss of synaptic plasticity measured as long term potentiation (LTP) and impaired the execution of cognitive tasks. At the molecular level, we have identified NRF2 enhancer sequences, termed Antioxidant Response Elements (AREs), in the promoter region of the TAZ coding gene. Consequently, we show that genetic and pharmacological manipulation of NRF2 results in the modulation of TAZ gene expression in NSPCs. These findings open a new window to understand the molecular mechanisms underlying NRF2 function in stemness. We have also established a novel role of TAZ as repressor of neuronal differentiation, based on the transcriptional repression of SOX2 and the basic helix-loop-helix (bHLH) factors ASCL1, NEUROG2 and NEUROD1. Data mining of The Cancer Genome Atlas showed a negative correlation between TAZ and the expression of these proneurogenic factors in lower grade gliomas and glioblastomas. We found that TAZ favours glioblastoma CSCs tumorigenic capacity and that genetic modulation of TAZ in these cells inversely correlated with proneurogenic genes expression. Due to the relevance of these proneurogenic factors in the ablation of glioblastoma cancer stem cells (CSCs), this novel TAZ/proneurogenic factors axis may have important implications in the development of this type of brain tumours. The characterization of molecular mechanism governing NSPCs fate provides new insights to harness these cells for brain repair. Overall, this thesis describes a novel role of NRF2 and TAZ in the control of neural stem cell fate, suggesting a new strategy to combat brain pathology
    corecore