583 research outputs found

    Concurrent Kleene Algebra with Tests and Branching Automata

    Get PDF
    We introduce concurrent Kleene algebra with tests (CKAT) as a combination of Kleene algebra with tests (KAT) of Kozen and Smith with concurrent Kleene algebras (CKA), introduced by Hoare, Möller, Struth and Wehrman. CKAT provides a relatively simple algebraic model for reasoning about semantics of concurrent programs. We generalize guarded strings to guarded series-parallel strings , or gsp-strings, to give a concrete language model for CKAT. Combining nondeterministic guarded automata of Kozen with branching automata of Lodaya and Weil one obtains a model for processing gsp-strings in parallel. To ensure that the model satisfies the weak exchange law (x‖y)(z‖w)≤(xz)‖(yw) of CKA, we make use of the subsumption order of Gischer on the gsp-strings. We also define deterministic branching automata and investigate their relation to (nondeterministic) branching automata. To express basic concurrent algorithms, we define concurrent deterministic flowchart schemas and relate them to branching automata and to concurrent Kleene algebras with tests

    Concurrent Kleene Algebra with Observations: from Hypotheses to Completeness

    Get PDF
    Concurrent Kleene Algebra (CKA) extends basic Kleene algebra with a parallel composition operator, which enables reasoning about concurrent programs. However, CKA fundamentally misses tests, which are needed to model standard programming constructs such as conditionals and while\mathsf{while}-loops. It turns out that integrating tests in CKA is subtle, due to their interaction with parallelism. In this paper we provide a solution in the form of Concurrent Kleene Algebra with Observations (CKAO). Our main contribution is a completeness theorem for CKAO. Our result resorts on a more general study of CKA "with hypotheses", of which CKAO turns out to be an instance: this analysis is of independent interest, as it can be applied to extensions of CKA other than CKAO

    Kleene Algebra with Observations

    Get PDF
    Kleene algebra with tests (KAT) is an algebraic framework for reasoning about the control flow of sequential programs. Generalising KAT to reason about concurrent programs is not straightforward, because axioms native to KAT in conjunction with expected axioms for concurrency lead to an anomalous equation. In this paper, we propose Kleene algebra with observations (KAO), a variant of KAT, as an alternative foundation for extending KAT to a concurrent setting. We characterise the free model of KAO, and establish a decision procedure w.r.t. its equational theory

    Kleene algebra with observations

    Get PDF
    Kleene algebra with tests (KAT) is an algebraic framework for reasoning about the control flow of sequential programs. Generalising KAT to reason about concurrent programs is not straightforward, because axioms native to KAT in conjunction with expected axioms for concurrency lead to an anomalous equation. In this paper, we propose Kleene algebra with observations (KAO), a variant of KAT, as an alternative foundation for extending KAT to a concurrent setting. We characterise the free model of KAO, and establish a decision procedure w.r.t. its equational theory

    An algebraic framework to reason about concurrency

    Get PDF
    Kleene algebra with tests (KAT) is an algebraic framework for reasoning about the control flow of sequential programs. Hoare, Struth, and collaborators proposed a concurrent extension of Kleene Algebra (CKA) as a first step towards developing algebraic reasoning for concurrent programs. Completing their research program and extending KAT to encompass concurrent behaviour has however proven to be more challenging than initially expected. The core problem appears because when generalising KAT to reason about concurrent programs, axioms native to KAT in conjunction with expected axioms for reasoning about concurrency lead to an unexpected equation about programs. In this talk, we will revise the literature on CKA(T) and explain the challenges and solutions in the development of an algebraic framework for concurrency. The talk is based on a series of papers joint with Tobias Kappé, Paul Brunet, Bas Luttik, Jurriaan Rot, Jana Wagemaker, and Fabio Zanasi [Tobias Kappé et al., 2017; Tobias Kappé et al., 2019; Kappé et al., 2018]. Additional references can be found on the CoNeCo project website: https://coneco-project.org/

    Algebraic Principles for Rely-Guarantee Style Concurrency Verification Tools

    Full text link
    We provide simple equational principles for deriving rely-guarantee-style inference rules and refinement laws based on idempotent semirings. We link the algebraic layer with concrete models of programs based on languages and execution traces. We have implemented the approach in Isabelle/HOL as a lightweight concurrency verification tool that supports reasoning about the control and data flow of concurrent programs with shared variables at different levels of abstraction. This is illustrated on two simple verification examples

    Probabilistic Rely-guarantee Calculus

    Full text link
    Jones' rely-guarantee calculus for shared variable concurrency is extended to include probabilistic behaviours. We use an algebraic approach which combines and adapts probabilistic Kleene algebras with concurrent Kleene algebra. Soundness of the algebra is shown relative to a general probabilistic event structure semantics. The main contribution of this paper is a collection of rely-guarantee rules built on top of that semantics. In particular, we show how to obtain bounds on probabilities by deriving rely-guarantee rules within the true-concurrent denotational semantics. The use of these rules is illustrated by a detailed verification of a simple probabilistic concurrent program: a faulty Eratosthenes sieve.Comment: Preprint submitted to TCS-QAP

    Completeness and Incompleteness of Synchronous Kleene Algebra

    Get PDF
    Synchronous Kleene algebra (SKA), an extension of Kleene algebra (KA), was proposed by Prisacariu as a tool for reasoning about programs that may execute synchronously, i.e., in lock-step. We provide a countermodel witnessing that the axioms of SKA are incomplete w.r.t. its language semantics, by exploiting a lack of interaction between the synchronous product operator and the Kleene star. We then propose an alternative set of axioms for SKA, based on Salomaa's axiomatisation of regular languages, and show that these provide a sound and complete characterisation w.r.t. the original language semantics.Comment: Accepted at MPC 201

    A synchronous program algebra: a basis for reasoning about shared-memory and event-based concurrency

    Full text link
    This research started with an algebra for reasoning about rely/guarantee concurrency for a shared memory model. The approach taken led to a more abstract algebra of atomic steps, in which atomic steps synchronise (rather than interleave) when composed in parallel. The algebra of rely/guarantee concurrency then becomes an instantiation of the more abstract algebra. Many of the core properties needed for rely/guarantee reasoning can be shown to hold in the abstract algebra where their proofs are simpler and hence allow a higher degree of automation. The algebra has been encoded in Isabelle/HOL to provide a basis for tool support for program verification. In rely/guarantee concurrency, programs are specified to guarantee certain behaviours until assumptions about the behaviour of their environment are violated. When assumptions are violated, program behaviour is unconstrained (aborting), and guarantees need no longer hold. To support these guarantees a second synchronous operator, weak conjunction, was introduced: both processes in a weak conjunction must agree to take each atomic step, unless one aborts in which case the whole aborts. In developing the laws for parallel and weak conjunction we found many properties were shared by the operators and that the proofs of many laws were essentially the same. This insight led to the idea of generalising synchronisation to an abstract operator with only the axioms that are shared by the parallel and weak conjunction operator, so that those two operators can be viewed as instantiations of the abstract synchronisation operator. The main differences between parallel and weak conjunction are how they combine individual atomic steps; that is left open in the axioms for the abstract operator.Comment: Extended version of a Formal Methods 2016 paper, "An algebra of synchronous atomic steps
    • …
    corecore