1,827 research outputs found

    Diagnosis of Combination Faults in a Planetary Gearbox using a Modulation Signal Bispectrum based Sideband Estimator

    Get PDF
    This paper presents a novel method for diagnosing combination faults in planetary gearboxes. Vibration signals measured on the gearbox housing exhibit complicated characteristics because of multiple modulations of concurrent excitation sources, signal paths and noise. To separate these modulations accurately, a modulation signal bispectrum based sideband estimator (MSB-SE) developed recently is used to achieve a sparse representation for the complicated signal contents, which allows effective enhancement of various sidebands for accurate diagnostic information. Applying the proposed method to diagnose an industrial planetary gearbox which coexists both bearing faults and gear faults shows that the different severities of the faults can be separated reliably under different load conditions, confirming the superior performance of this MSB-SE based diagnosis scheme

    A Literature Review of Fault Diagnosis Based on Ensemble Learning

    Get PDF
    The accuracy of fault diagnosis is an important indicator to ensure the reliability of key equipment systems. Ensemble learning integrates different weak learning methods to obtain stronger learning and has achieved remarkable results in the field of fault diagnosis. This paper reviews the recent research on ensemble learning from both technical and field application perspectives. The paper summarizes 87 journals in recent web of science and other academic resources, with a total of 209 papers. It summarizes 78 different ensemble learning based fault diagnosis methods, involving 18 public datasets and more than 20 different equipment systems. In detail, the paper summarizes the accuracy rates, fault classification types, fault datasets, used data signals, learners (traditional machine learning or deep learning-based learners), ensemble learning methods (bagging, boosting, stacking and other ensemble models) of these fault diagnosis models. The paper uses accuracy of fault diagnosis as the main evaluation metrics supplemented by generalization and imbalanced data processing ability to evaluate the performance of those ensemble learning methods. The discussion and evaluation of these methods lead to valuable research references in identifying and developing appropriate intelligent fault diagnosis models for various equipment. This paper also discusses and explores the technical challenges, lessons learned from the review and future development directions in the field of ensemble learning based fault diagnosis and intelligent maintenance

    Research of dimensionless index for fault diagnosis positioning based on EMD

    Get PDF
    Dimensionless index as a new theory tool has been applied in fault diagnosis study, which has shown some progress, however, it will cause some interference to the diagnosis results since no considering the influence of other noise jamming signal is given. Empirical Mode Decomposition (EMD) technique could extract effectively the fault characteristic signal of vibration data. In view of the noise jamming of dimensionless index in analyzing data, dimensionless index processing algorithms based on EMD is proposed. Firstly, EMD method is used to decompose the collected vibration signals, then the first few Intrinsic Mode Functions (IMF) components are obtained which contains the fault characteristic of vibration data, and the effects of other noise signal are removed at the same time. Secondly, fault diagnosis can be achieved by calculating dimensionless parameter values to the IMF components with characteristic signal of vibration data, and obtaining range of characteristic value of their dimensionless index, then diagnosing and analyzing fault characteristics of the equipment. The proposed method is applied to fault diagnosis test analysis of rotating machinery, and the experiment has shown that the proposed method is efficient and effective

    Advanced Fault Diagnosis and Health Monitoring Techniques for Complex Engineering Systems

    Get PDF
    Over the last few decades, the field of fault diagnostics and structural health management has been experiencing rapid developments. The reliability, availability, and safety of engineering systems can be significantly improved by implementing multifaceted strategies of in situ diagnostics and prognostics. With the development of intelligence algorithms, smart sensors, and advanced data collection and modeling techniques, this challenging research area has been receiving ever-increasing attention in both fundamental research and engineering applications. This has been strongly supported by the extensive applications ranging from aerospace, automotive, transport, manufacturing, and processing industries to defense and infrastructure industries

    Phase Synchrony Analysis of Rolling Bearing Vibrations and Its Application to Failure Identification

    Get PDF
    As the failure-induced component (FIC) in the vibration signals of bearings transmits through housings and shafts, potential phase synchronization is excited among multichannel signals. As phase synchrony analysis (PSA) does not involve the chaotic behavior of signals, it is suitable for characterizing the operating state of bearings considering complicated vibration signals. Therefore, a novel PSA method was developed to identify and track the failure evolution of bearings. First, resonance demodulation and variational mode decomposition (VMD) were combined to extract the mono-component or band-limited FIC from signals. Then, the instantaneous phase of the FIC was analytically solved using Hilbert transformation. The generalized phase difference (GPD) was used to quantify the relationship between FICs extracted from different vibration signals. The entropy of the GPD was regarded as the indicator for quantifying failure evolution. The proposed method was applied to the vibration signals obtained from an accelerated failure experiment and a natural failure experiment. Results showed that phase synchronization in bearing failure evolution was detected and evaluated effectively. Despite the chaotic behavior of the signals, the phase synchronization indicator could identify bearing failure during the initial stage in a robust manner

    Rotor Unbalance Kind and Severity Identification by Current Signature Analysis with Adaptative Update to Multiclass Machine Learning Algorithms

    Get PDF
    The health of a rotating electric machine can be evaluated by monitoring electrical and mechanical parameters. As more information is available, it easier can become the diagnosis of the machine operational condition. We built a laboratory test bench to study rotor unbalance issues according to ISO standards. Using the electric stator current harmonic analysis, this paper presents a comparison study among Support-Vector Machines, Decision Tree classifies, and One-vs-One strategy to identify rotor unbalance kind and severity problem – a nonlinear multiclass task. Moreover, we propose a methodology to update the classifier for dealing better with changes produced by environmental variations and natural machinery usage. The adaptative update means to update the training data set with an amount of recent data, saving the entire original historical data. It is relevant for engineering maintenance. Our results show that the current signature analysis is appropriate to identify the type and severity of the rotor unbalance problem. Moreover, we show that machine learning techniques can be effective for an industrial application

    AI-enabled modeling and monitoring of data-rich advanced manufacturing systems

    Get PDF
    The infrastructure of cyber-physical systems (CPS) is based on a meta-concept of cybermanufacturing systems (CMS) that synchronizes the Industrial Internet of Things (IIoTs), Cloud Computing, Industrial Control Systems (ICSs), and Big Data analytics in manufacturing operations. Artificial Intelligence (AI) can be incorporated to make intelligent decisions in the day-to-day operations of CMS. Cyberattack spaces in AI-based cybermanufacturing operations pose significant challenges, including unauthorized modification of systems, loss of historical data, destructive malware, software malfunctioning, etc. However, a cybersecurity framework can be implemented to prevent unauthorized access, theft, damage, or other harmful attacks on electronic equipment, networks, and sensitive data. The five main cybersecurity framework steps are divided into procedures and countermeasure efforts, including identifying, protecting, detecting, responding, and recovering. Given the major challenges in AI-enabled cybermanufacturing systems, three research objectives are proposed in this dissertation by incorporating cybersecurity frameworks. The first research aims to detect the in-situ additive manufacturing (AM) process authentication problem using high-volume video streaming data. A side-channel monitoring approach based on an in-situ optical imaging system is established, and a tensor-based layer-wise texture descriptor is constructed to describe the observed printing path. Subsequently, multilinear principal component analysis (MPCA) is leveraged to reduce the dimension of the tensor-based texture descriptor, and low-dimensional features can be extracted for detecting attack-induced alterations. The second research work seeks to address the high-volume data stream problems in multi-channel sensor fusion for diverse bearing fault diagnosis. This second approach proposes a new multi-channel sensor fusion method by integrating acoustics and vibration signals with different sampling rates and limited training data. The frequency-domain tensor is decomposed by MPCA, resulting in low-dimensional process features for diverse bearing fault diagnosis by incorporating a Neural Network classifier. By linking the second proposed method, the third research endeavor is aligned to recovery systems of multi-channel sensing signals when a substantial amount of missing data exists due to sensor malfunction or transmission issues. This study has leveraged a fully Bayesian CANDECOMP/PARAFAC (FBCP) factorization method that enables to capture of multi-linear interaction (channels × signals) among latent factors of sensor signals and imputes missing entries based on observed signals

    Profitability, reliability and condition based monitoring of LNG floating platforms: a review

    Get PDF
    The efficiency and profitability of Floating, Production, Storage and Offloading platform (FPSO) terminals depends on various factors such as LNG liquefaction process type, system reliability and maintenance approach. This review is organized along the following research questions: (i) what are the economic benefit of FPSO and how does the liquefaction process type affect its profitability profile?, (ii) how to improve the reliability of the liquefaction system as key section? and finally (iii) what are the major CBM techniques applied on FPSO. The paper concluded the literature and identified the research shortcomings in order to improve profitability, efficiency and availability of FPSOs
    corecore