26 research outputs found

    REAL-TIME ERROR DETECTION AND CORRECTION FOR ROBUST OPERATION OF AUTONOMOUS SYSTEMS USING ENCODED STATE CHECKS

    Get PDF
    The objective of the proposed research is to develop methodologies, support algorithms and software-hardware infrastructure for detection, diagnosis, and correction of failures for actuators, sensors and control software in linear and nonlinear state variable systems with the help of multiple checks employed in the system. This objective is motivated by the proliferation of autonomous sense-and-control real-time systems, such as intelligent robots and self-driven cars which must maintain a minimum level of performance in the presence of electro-mechanical degradation of system-level components in the field as well as external attacks in the form of transient errors. A key focus is on rapid recovery from the effects of such anomalies and impairments with minimal impact on system performance while maintaining low implementation overhead as opposed to traditional schemes for recovery that rely on duplication or triplication. On-line detection, diagnosis and correction techniques are investigated and rely on analysis of system under test response signatures to real-time stimulus. For on-line error detection and diagnosis, linear and nonlinear state space encodings of the system under test are used and specific properties of the codes, as well as machine learning model based approaches were used are analyzed in real-time. Recovery is initiated by copying check model values to correct error for sensor and control software malfunction, and by redesigning the controller parameter on-the-fly for actuators to restore system performance. Future challenges that need to be addressed include viability studies of the proposed techniques on mobile autonomous system in distributed setting as well as application to systems with soft as well as hard real-time performance constraints.Ph.D

    Enabling low cost test and tuning of difficult-to-measure device specifications: application to DC-DC converters and high speed devices

    Get PDF
    Low-cost test and tuning methods for difficult-to-measure specifications are presented in this research from the following perspectives: 1)"Safe" test and self-tuning for power converters: To avoid the risk of device under test (DUT) damage during conventional load/line regulation measurement on power converter, a "safe" alternate test structure is developed where the power converter (boost/buck converter) is placed in a different mode of operation during alternative test (light switching load) as opposed to standard test (heavy switching load) to prevent damage to the DUT during manufacturing test. Based on the alternative test structure, self-tuning methods for both boost and buck converters are also developed in this thesis. In addition, to make these test structures suitable for on-chip built-in self-test (BIST) application, a special sensing circuit has been designed and implemented. Stability analysis filters and appropriate models are also implemented to predict the DUT’s electrical stability condition during test and to further predict the values of tuning knobs needed for the tuning process. 2) High bandwidth RF signal generation: Up-convertion has been widely used in high frequency RF signal generation but mixer nonlinearity results in signal distortion that is difficult to eliminate with such methods. To address this problem, a framework for low-cost high-fidelity wideband RF signal generation is developed in this thesis. Depending on the band-limited target waveform, the input data for two interleaved DACs (digital-to-analog converters) system is optimized by a matrix-model-based algorithm in such a way that it minimizes the distortion between one of its image replicas in the frequency domain and the target RF waveform within a specified signal bandwidth. The approach is used to demonstrate how interferers with specified frequency characteristics can be synthesized at low cost for interference testing of RF communications systems. The frameworks presented in this thesis have a significant impact in enabling low-cost test and tuning of difficult-to-measure device specifications for power converter and high-speed devices.Ph.D

    Electronic systems-1. Lecture notes

    Get PDF
    The discipline «Electronic Systems» belongs to the cycle of professional and practical training of bachelors in the educational program «Electronic Components and Systems» is read over one semester (7) and is one of the final subjects of the bachelor's degree. In the process of studying the course, students get acquainted with the informational assessments of the ES; a description of the signals used in different purposes of the ES; methods of their processing, storage and transformation; principles of construction and operation of the ES - the selection, transformation, transmission, reception, registration and display of information. The basics of device design based on programmable logic integrated circuits (FPGA) are considered. Lecture notes contain theoretical information for up to 18 lectures and a list of recommended reading

    Ageing and embedded instrument monitoring of analogue/mixed-signal IPS

    Get PDF

    The Fifth NASA Symposium on VLSI Design

    Get PDF
    The fifth annual NASA Symposium on VLSI Design had 13 sessions including Radiation Effects, Architectures, Mixed Signal, Design Techniques, Fault Testing, Synthesis, Signal Processing, and other Featured Presentations. The symposium provides insights into developments in VLSI and digital systems which can be used to increase data systems performance. The presentations share insights into next generation advances that will serve as a basis for future VLSI design

    Integrated photonic transmitters for secure space quantum communication

    Get PDF
    An important issue in today's information society is the security of data transmission against potential intruders, which always put at risk the confidentiality. Current methods to increase security require that the two parties wishing to transmit information, exchange or share one or more security keys. Once the key has been identified, the information can be transferred in a provable secure way using a one-time pad, i. e. the key length is as long as the plaintext. Therefore, the security of the information transmission is based exclusively on the security of the key exchange. Quantum cryptography, or more precisely quantum key distribution (QKD), guarantees absolutely secure key distribution based on the principles of quantum physics, according to which it is not possible to measure or reproduce a state (e.g. polarization or phase of a photon) without being detected. The key is generated out from the measurement of the information encoded into specific quantum states of a photon, named qubits. For example, a qubit can be created using properties such as the polarization or the phase of a photon. Achieved goals of this thesis are the development of a new class of high speed integrated photonic sources for applications in quantum key distribution systems, capable of producing unprecedented qubit rates (100 Mbps - 1 Gbps) and transmitting those over larger distances than those achieved so far (>200 km). More specifically the work has been focused on developing faint pulse sources which can be used in very demanding environmental conditions, such as those in Space. For the development of these sources, apart from the optical design, essential is the opto-mechanical engineering as well as the integration with the electronics. One of the objectives was to achieve very high level of integration and power efficiency, e.g. volumes and power consumption between 10 and 100 times smaller than those typical of a laboratory experiment. Moreover, work in related parts of a whole QKD transmission system has been carried out. In particular, a new scheme for a compact, fast and simple random number generator has been demonstrated successfully achieving a random number generation rate of 1.1 Gbps. Also, during the course of this thesis, the development and engineering of a free-space QKD optical link has been initiated. This thesis makes use of novel ideas to alternatively demonstrate proof-of-concept experiments, which could then further develop into commercial products. To this end, close collaborations with world-wide leading companies in the field have been established. The Optoelectronics Group at ICFO has been involved in current European Space Agency (ESA) projects to develop a small footprint and low power consumption quantum transceiver and a high-flux entangled photon source.En l’actual societat del coneixement és important la seguretat en la transmissió de dades contra potencial intrusos, els quals sempre posen en risc la confidencialitat. Mètodes actuals per incrementar la seguretat requereixen que les dos parts que volen transmetre informació, intercanviïn o comparteixin una o més claus. Una vegada la clau ha estat identificada, la informació pot ser transferida de forma provadament segura utilitzant ”‘one-time pad”’. Per tant, la seguretat en la transmissió de la informació es basa exclusivament en la seguretat en l’intercanvi de la clau. La criptografia quàntica, o més precisament distribució de clau quàntica (QKD), garanteix absolutament la seguretat de la distribució de la clau basant-se en els principis de la física quàntica, segons la qual no és possible mesurar o reproduir un estat (p. e. la polarització o fase d’un fotó) sense ser detectat. La clau es genera a partir de les mesures de la informació codificada en estat quàntics del fotó, anomenats qubits. Per exemple, un qubit pot ser creat utilitzant propietats com la polarització o fase d’un fotó. Els objectius aconseguits d’aquesta tesis són el desenvolupament d’una nova classe d’emissors fotònics d’alta velocitat per a aplicacions en sistemes de distribució de clau quàntica, capaç¸os de produir velocitats de qubit sense precedents (100 Mbps - 1 Gbps) i transmetre’ls a través de distàncies més llunyanes que les aconseguides fins ara (> 200 Km). Més en concret el treball s’ha centrat en el desenvolupament de fonts de pulsos atenuats que poden ser usades en condicions ambientals molt extremes, com les presents a l’Espai. Per al desenvolupament d’aquestes fonts, apart del disseny òptic, importantíssim es l’enginyeria optomecànica com també la integració amb la electrònica. Un dels objectius ha estat aconseguir un molt alt nivell de integració i eficiència de potència, p. e. volums i consums de potència entre 10 i 100 vegades més petits que els típics en experiments de laboratori. Ademés, s’ha realitzat treball en altres parts relacionades amb un sistema de transmissió QKD. En particular, un nou esquema per a un generador de números aleatori compacte, ràpid i simple ha estat positivament demostrat aconseguint velocitats de generació de números aleatoris de 1:1 Gbps. També, el desenvolupament i enginyeria d’un enllaç òptic per a QKD en espai lliure ha estat iniciat durant aquesta tesis. Aquesta tesis utilitza idees novedoses per a demostrar experiments de prova de concepte, els quals poden esdevenir en productes comercials. Per a aquest fi, s’han establert col•laboracions amb empreses internacionals líders del sector. A més a més, el Grup d’Optoelectrònica de ICFO ha estat involucrat en projectes de la Agència Espacial Europea (ESA) per a desenvolupar un transceptor quàntic de tamany reduït i baix consum de potència, el qual també conté una font de fotons entrellaçts d’alt flux

    The deep space network

    Get PDF
    The objectives, functions, and organization of the Deep Space Network are summarized. Deep space station, ground communication, and network operations control capabilities are described

    Analog System-on-a-Chip with Application to Biosensors

    Get PDF
    This dissertation facilitates the design and fabrication of analog systems-on-a-chip (SoCs). In this work an analog SoC is developed with application to organic fluid analysis. The device contains a built-in self-test method for performing on-chip analysis of analog macros. The analog system-on-a-chip developed in this dissertation can be used to evaluate the properties of fluids for medical diagnoses. The research herein described covers the development of: analog SoC models, an improved set of chemical sensor arrays, a self-contained system-on-a-chip for the determination of fluid properties, and a method of performing on-chip testing of analog SoC sub-blocks

    Putting artificial intelligence into wearable human-machine interfaces – towards a generic, self-improving controller

    Get PDF
    The standard approach to creating a machine learning based controller is to provide users with a number of gestures that they need to make; record multiple instances of each gesture using specific sensors; extract the relevant sensor data and pass it through a supervised learning algorithm until the algorithm can successfully identify the gestures; map each gesture to a control signal that performs a desired outcome. This approach is both inflexible and time consuming. The primary contribution of this research was to investigate a new approach to putting artificial intelligence into wearable human-machine interfaces by creating a Generic, Self-Improving Controller. It was shown to learn two user-defined static gestures with an accuracy of 100% in less than 10 samples per gesture; three in less than 20 samples per gesture; and four in less than 35 samples per gesture. Pre-defined dynamic gestures were more difficult to learn. It learnt two with an accuracy of 90% in less than 6,000 samples per gesture; and four with an accuracy of 70% after 50,000 samples per gesture. The research has resulted in a number of additional contributions: • The creation of a source-independent hardware data capture, processing, fusion and storage tool for standardising the capture and storage of historical copies of data captured from multiple different sensors. • An improved Attitude and Heading Reference System (AHRS) algorithm for calculating orientation quaternions that is five orders of magnitude more precise. • The reformulation of the regularised TD learning algorithm; the reformulation of the TD learning algorithm applied the artificial neural network back-propagation algorithm; and the combination of the reformulations into a new, regularised TD learning algorithm applied to the artificial neural network back-propagation algorithm. • The creation of a Generic, Self-Improving Predictor that can use different learning algorithms and a Flexible Artificial Neural Network.Open Acces
    corecore