18,936 research outputs found

    Multiscale, thermomechanical topology optimization of self-supporting cellular structures for porous injection molds

    Get PDF
    Purpose This paper aims to establish a multiscale topology optimization method for the optimal design of non-periodic, self-supporting cellular structures subjected to thermo-mechanical loads. The result is a hierarchically complex design that is thermally efficient, mechanically stable and suitable for additive manufacturing (AM). Design/methodology/approach The proposed method seeks to maximize thermo-mechanical performance at the macroscale in a conceptual design while obtaining maximum shear modulus for each unit cell at the mesoscale. Then, the macroscale performance is re-estimated, and the mesoscale design is updated until the macroscale performance is satisfied. Findings A two-dimensional Messerschmitt Bolkow Bolhm (MBB) beam withstanding thermo-mechanical load is presented to illustrate the proposed design method. Furthermore, the method is implemented to optimize a three-dimensional injection mold, which is successfully prototyped using 420 stainless steel infiltrated with bronze. Originality/value By developing a computationally efficient and manufacturing friendly inverse homogenization approach, the novel multiscale design could generate porous molds which can save up to 30 per cent material compared to their solid counterpart without decreasing thermo-mechanical performance. Practical implications This study is a useful tool for the designer in molding industries to reduce the cost of the injection mold and take full advantage of AM

    Review of research in feature-based design

    Get PDF
    Research in feature-based design is reviewed. Feature-based design is regarded as a key factor towards CAD/CAPP integration from a process planning point of view. From a design point of view, feature-based design offers possibilities for supporting the design process better than current CAD systems do. The evolution of feature definitions is briefly discussed. Features and their role in the design process and as representatives of design-objects and design-object knowledge are discussed. The main research issues related to feature-based design are outlined. These are: feature representation, features and tolerances, feature validation, multiple viewpoints towards features, features and standardization, and features and languages. An overview of some academic feature-based design systems is provided. Future research issues in feature-based design are outlined. The conclusion is that feature-based design is still in its infancy, and that more research is needed for a better support of the design process and better integration with manufacturing, although major advances have already been made

    Computer graphics application in the engineering design integration system

    Get PDF
    The computer graphics aspect of the Engineering Design Integration (EDIN) system and its application to design problems were discussed. Three basic types of computer graphics may be used with the EDIN system for the evaluation of aerospace vehicles preliminary designs: offline graphics systems using vellum-inking or photographic processes, online graphics systems characterized by direct coupled low cost storage tube terminals with limited interactive capabilities, and a minicomputer based refresh terminal offering highly interactive capabilities. The offline line systems are characterized by high quality (resolution better than 0.254 mm) and slow turnaround (one to four days). The online systems are characterized by low cost, instant visualization of the computer results, slow line speed (300 BAUD), poor hard copy, and the early limitations on vector graphic input capabilities. The recent acquisition of the Adage 330 Graphic Display system has greatly enhanced the potential for interactive computer aided design

    Development of an Active Wingtip for Aeroelastic Control

    Get PDF
    This paper presents the design of an innovative wingtip device actively actuated to control the aeroelastic loads, with a focus on the gust load alleviation. It summarizes the work carried out in the Clean Sky 2 AIRGREEN2 project, where the device was developed from scratch and reached a relevant technology readiness level with the full-scale prototype manufacturing and testing, compulsory to obtain the permit to fly. This paper describes the overall design of the devices, covering the structure, the aero-servo-elasticity characteristics of the whole aircraft, the actuation system design, the scaled wind tunnel testing, and the full-scale structural qualification tests. The paper proves how the development of a new item involves several disciplines simultaneously, remarking on the importance of an integrated approach to the new generation aircraft design

    New Approaches to HSCT Multidisciplinary Design and Optimization

    Get PDF
    The successful development of a capable and economically viable high speed civil transport (HSCT) is perhaps one of the most challenging tasks in aeronautics for the next two decades. At its heart it is fundamentally the design of a complex engineered system that has significant societal, environmental and political impacts. As such it presents a formidable challenge to all areas of aeronautics, and it is therefore a particularly appropriate subject for research in multidisciplinary design and optimization (MDO). In fact, it is starkly clear that without the availability of powerful and versatile multidisciplinary design, analysis and optimization methods, the design, construction and operation of im HSCT simply cannot be achieved. The present research project is focused on the development and evaluation of MDO methods that, while broader and more general in scope, are particularly appropriate to the HSCT design problem. The research aims to not only develop the basic methods but also to apply them to relevant examples from the NASA HSCT R&D effort. The research involves a three year effort aimed first at the HSCT MDO problem description, next the development of the problem, and finally a solution to a significant portion of the problem

    Continual improvement: A bibliography with indexes, 1992-1993

    Get PDF
    This bibliography lists 606 references to reports and journal articles entered into the NASA Scientific and Technical Information Database during 1992 to 1993. Topics cover the philosophy and history of Continual Improvement (CI), basic approaches and strategies for implementation, and lessons learned from public and private sector models. Entries are arranged according to the following categories: Leadership for Quality, Information and Analysis, Strategic Planning for CI, Human Resources Utilization, Management of Process Quality, Supplier Quality, Assessing Results, Customer Focus and Satisfaction, TQM Tools and Philosophies, and Applications. Indexes include subject, personal author, corporate source, contract number, report number, and accession number

    A metric to represent the evolution of CAD/analysis models in collaborative design

    Get PDF
    Computer Aided Design (CAD) and Computer Aided Engineering (CAE) models are often used during product design. Various interactions between the different models must be managed for the designed system to be robust and in accordance with initially defined specifications. Research published to date has for example considered the link between digital mock-up and analysis models. However design/analysis integration must take into consideration the important number of models (digital mock-up and simulation) due to model evolution in time, as well as considering system engineering. To effectively manage modifications made to the system, the dependencies between the different models must be known and the nature of the modification must be characterised to estimate the impact of the modification throughout the dependent models. We propose a technique to describe the nature of a modification which may be used to determine the consequence within other models as well as a way to qualify the modified information. To achieve this, a metric is proposed that allows the qualification and evaluation of data or information, based on the maturity and validity of information and model

    Life cycle cost modelling as an aircraft design decision support tool

    No full text
    This report summarizes the work that has been carried out as part of the FLAVIIR project, a 5 year research program looking at technologies for future unmanned air vehicles. A novel classification of aircraft product definition is utilised and a framework to estimate the life cycle cost of aircraft using the product definition is presented. The architecture to estimate the life cycle cost and the associated models are described.The acquisition costs are estimated using a hierarchical structure and a discrete simulation model is used to estimate the maintenance and operation costs. The acquisition cost model uses an object oriented approach with libraries of materials and processes integrated into the cost model. Risk analysis is performed to identify the important design parameters and uncertainty in the model. The acquisition cost model developed has the capability to estimate the costs of aircraft structures manufactured using metal-based materials as well as non-metal-based materials.The discrete event simulation model estimates the operation and maintenance costs of a fleet of aircraft using the mission characteristics, aircraft performance and the logistics data as input. The aircraft performance parameters are calculated by using aerodynamic analysis along with performance analysis models and the simulation model utilises a novel methodology to link aircraft performance with survivability analysis for estimating the maintenance costs.A framework is presented in which the cost models developed can be integrated into the conceptual design process to facilitate the comparison between different configurations. The usage of the life cycle cost framework as a decision support tool is outlined and three case studies are presented which include composites vs metals trade-off analysis, optimisation studies and web deployment for real time cost estimation. The novel contributions of this research are outlined and interesting avenues for future research that can be pursued are identified
    • ā€¦
    corecore