119 research outputs found

    Rubble detection from VHR aerial imagery data using differential morphological profiles

    Get PDF
    Rubble detection is a key element in post disaster crisis assessment and response procedures. In this paper we present an automated method for rapid detection and quantification of rubble from very high resolution (VHR) aerial imagery of urban regions. It is a two step procedure in which the input image is projected on to a hierarchical representation structure for efficient mining and decomposition. Image features matching the geometric and chromatic properties of rubble are fused into a rubble layer that can be re-adjusted interactively. The targeted objects are evaluated based on a density metric given by spatial aggregation. The method is tested on a small-scale exercise on the publically available aerial imagery of Port-au-Prince, Haiti. Performance and preliminary results are discussed.JRC.G.2-Global security and crisis managemen

    Distributed Connected Component Filtering and Analysis in 2-D and 3-D Tera-Scale Data Sets

    Get PDF
    Connected filters and multi-scale tools are region-based operators acting on the connected components of an image. Component trees are image representations to efficiently perform these operations as they represent the inclusion relationship of the connected components hierarchically. This paper presents disccofan (DIStributed Connected COmponent Filtering and ANalysis), a new method that extends the previous 2-D implementation of the Distributed Component Forests (DCFs) to handle 3-D processing and higher dynamic range data sets. disccofan combines shared and distributed memory techniques to efficiently compute component trees, user-defined attributes filters, and multi-scale analysis. Compared to similar methods, disccofan is faster and scales better on low and moderate dynamic range images, and is the only method with a speed-up larger than 1 on a realistic, astronomical floating-point data set. It achieves a speed-up of 11.20 using 48 processes to compute the DCF of a 162 Gigapixels, single-precision floating-point 3-D data set, while reducing the memory used by a factor of 22. This approach is suitable to perform attribute filtering and multi-scale analysis on very large 2-D and 3-D data sets, up to single-precision floating-point value

    Parallel Attribute Computation for Distributed Component Forests

    Get PDF
    Component trees are powerful image processing tools to analyze the connected components of an image. One attractive strategy consists in building the nested relations at first and then deriving the components' attributes afterward, such that the user can switch between different attribute functions without having to re-compute the entire tree. Only sequential algorithms allow such an approach, while no parallel algorithm is available. In this paper, we extend a recent method using distributed memory techniques to enable posterior attribute computation in a parallel or distributed manner. This novel approach significantly reduces the computational time needed for combining several attribute functions interactively in Giga and Tera-Scale data sets

    17th SC@RUG 2020 proceedings 2019-2020

    Get PDF

    17th SC@RUG 2020 proceedings 2019-2020

    Get PDF

    17th SC@RUG 2020 proceedings 2019-2020

    Get PDF

    Science for Disaster Risk Reduction

    Get PDF
    This thematic report describes JRC's activities in support to disaster management. The JRC develops tools and methodologies to help in all phases of disaster management, from preparedness and risk assessment to recovery and reconstruction through to forecasting and early warning.JRC.A.6-Communicatio

    17th SC@RUG 2020 proceedings 2019-2020

    Get PDF

    17th SC@RUG 2020 proceedings 2019-2020

    Get PDF

    17th SC@RUG 2020 proceedings 2019-2020

    Get PDF
    • …
    corecore