727 research outputs found

    Deep learning for video game playing

    Get PDF
    In this article, we review recent Deep Learning advances in the context of how they have been applied to play different types of video games such as first-person shooters, arcade games, and real-time strategy games. We analyze the unique requirements that different game genres pose to a deep learning system and highlight important open challenges in the context of applying these machine learning methods to video games, such as general game playing, dealing with extremely large decision spaces and sparse rewards

    Computational Modeling of Biological Neural Networks on GPUs: Strategies and Performance

    Get PDF
    Simulating biological neural networks is an important task for computational neuroscientists attempting to model and analyze brain activity and function. As these networks become larger and more complex, the computational power required grows significantly, often requiring the use of supercomputers or compute clusters. An emerging low-cost, highly accessible alternative to many of these resources is the Graphics Processing Unit (GPU) - specialized massively-parallel graphics hardware that has seen increasing use as a general purpose computational accelerator thanks largely due to NVIDIA\u27s CUDA programming interface. We evaluated the relative benefits and limitations of GPU-based tools for large-scale neural network simulation and analysis, first by developing an agent-inspired spiking neural network simulator then by adapting a neural signal decoding algorithm. Under certain network configurations, the simulator was able to outperform an equivalent MPI-based parallel implementation run on a dedicated compute cluster, while the decoding algorithm implementation consistently outperformed its serial counterpart. Additionally, the GPU-based simulator was able to readily visualize network spiking activity in real-time due to the close integration with standard computer graphics APIs. The GPU was shown to provide significant performance benefits under certain circumstances while lagging behind in others. Given the complex nature of these research tasks, a hybrid strategy that combines GPU- and CPU-based approaches provides greater performance than either separately
    corecore