795 research outputs found

    Design of testbed and emulation tools

    Get PDF
    The research summarized was concerned with the design of testbed and emulation tools suitable to assist in projecting, with reasonable accuracy, the expected performance of highly concurrent computing systems on large, complete applications. Such testbed and emulation tools are intended for the eventual use of those exploring new concurrent system architectures and organizations, either as users or as designers of such systems. While a range of alternatives was considered, a software based set of hierarchical tools was chosen to provide maximum flexibility, to ease in moving to new computers as technology improves and to take advantage of the inherent reliability and availability of commercially available computing systems

    Techniques for Detection, Root Cause Diagnosis, and Classification of In-Production Concurrency Bugs

    Get PDF
    Concurrency bugs are at the heart of some of the worst bugs that plague software. Concurrency bugs slow down software development because it can take weeks or even months before developers can identify and fix them. In-production detection, root cause diagnosis, and classification of concurrency bugs is challenging. This is because these activities require heavyweight analyses such as exploring program paths and determining failing program inputs and schedules, all of which are not suited for software running in production. This dissertation develops practical techniques for the detection, root cause diagnosis, and classification of concurrency bugs for inproduction software. Furthermore, we develop ways for developers to better reason about concurrent programs. This dissertation builds upon the following principles: — The approach in this dissertation spans multiple layers of the system stack, because concurrency spans many layers of the system stack. — It performs most of the heavyweight analyses in-house and resorts to minimal in-production analysis in order to move the heavy lifting to where it is least disruptive. — It eschews custom hardware solutions that may be infeasible to implement in the real world. Relying on the aforementioned principles, this dissertation introduces: 1. Techniques to automatically detect concurrency bugs (data races and atomicity violations) in-production by combining in-house static analysis and in-production dynamic analysis. 2. A technique to automatically identify the root causes of in-production failures, with a particular emphasis on failures caused by concurrency bugs. 3. A technique that given a data race, automatically classifies it based on its potential consequence, allowing developers to answer questions such as “can the data race cause a crash or a hang?”, or “does the data race have any observable effect?”. We build a toolchain that implements all the aforementioned techniques. We show that the tools we develop in this dissertation are effective, incur low runtime performance overhead, and have high accuracy and precision

    FlaKat: A Machine Learning-Based Categorization Framework for Flaky Tests

    Get PDF
    Flaky tests can pass or fail non-deterministically, without alterations to a software system. Such tests are frequently encountered by developers and hinder the credibility of test suites. Thus, flaky tests have caught the attention of researchers in recent years. Numerous approaches have been published on defining, locating, and categorizing flaky tests, along with auto-repairing strategies for specific types of flakiness. Practitioners have developed several techniques to detect flaky tests automatically. The most traditional approaches adopt repeated execution of test suites accompanied by techniques such as shuffled execution order, and random distortion of environment. State-of-the-art research also incorporates machine learning solutions into flaky test detection and achieves reasonably good accuracy. Moreover, strategies for repairing flaky tests have also been published for specific flaky test categories and the process has been automated as well. However, there is a research gap between flaky test detection and category-specific flakiness repair. To address the aforementioned gap, this thesis proposes a novel categorization framework, called FlaKat, which uses machine-learning classifiers for fast and accurate categorization of a given flaky test case. FlaKat first parses and converts raw flaky tests into vector embeddings. The dimensionality of embeddings is reduced and then used for training machine learning classifiers. Sampling techniques are applied to address the imbalance between flaky test categories in the dataset. The evaluation of FlaKat was conducted to determine its performance with different combinations of configurations using known flaky tests from 108 open-source Java projects. Notably, Implementation-Dependent and Order-Dependent flaky tests, which represent almost 75% of the total dataset, achieved F1 scores (harmonic mean of precision and recall) of 0.94 and 0.90 respectively while the overall macro average (no weight difference between categories) is at 0.67. This research work also proposes a new evaluation metric, called Flakiness Detection Capacity (FDC), for measuring the accuracy of classifiers from the perspective of information theory and provides proof for its effectiveness. The final obtained results for FDC also aligns with F1 score regarding which classifier yields the best flakiness classification

    GeantV: Results from the prototype of concurrent vector particle transport simulation in HEP

    Full text link
    Full detector simulation was among the largest CPU consumer in all CERN experiment software stacks for the first two runs of the Large Hadron Collider (LHC). In the early 2010's, the projections were that simulation demands would scale linearly with luminosity increase, compensated only partially by an increase of computing resources. The extension of fast simulation approaches to more use cases, covering a larger fraction of the simulation budget, is only part of the solution due to intrinsic precision limitations. The remainder corresponds to speeding-up the simulation software by several factors, which is out of reach using simple optimizations on the current code base. In this context, the GeantV R&D project was launched, aiming to redesign the legacy particle transport codes in order to make them benefit from fine-grained parallelism features such as vectorization, but also from increased code and data locality. This paper presents extensively the results and achievements of this R&D, as well as the conclusions and lessons learnt from the beta prototype.Comment: 34 pages, 26 figures, 24 table

    Numerical aerodynamic simulation facility preliminary study, volume 1

    Get PDF
    A technology forecast was established for the 1980-1985 time frame and the appropriateness of various logic and memory technologies for the design of the numerical aerodynamic simulation facility was assessed. Flow models and their characteristics were analyzed and matched against candidate processor architecture. Metrics were established for the total facility, and housing and support requirements of the facility were identified. An overview of the system is presented, with emphasis on the hardware of the Navier-Stokes solver, which is the key element of the system. Software elements of the system are also discussed

    Safe code transfromations for speculative execution in real-time systems

    Get PDF
    Although compiler optimization techniques are standard and successful in non-real-time systems, if naively applied, they can destroy safety guarantees and deadlines in hard real-time systems. For this reason, real-time systems developers have tended to avoid automatic compiler optimization of their code. However, real-time applications in several areas have been growing substantially in size and complexity in recent years. This size and complexity makes it impossible for real-time programmers to write optimal code, and consequently indicates a need for compiler optimization. Recently researchers have developed or modified analyses and transformations to improve performance without degrading worst-case execution times. Moreover, these optimization techniques can sometimes transform programs which may not meet constraints/deadlines, or which result in timeouts, into deadline-satisfying programs. One such technique, speculative execution, also used for example in parallel computing and databases, can enhance performance by executing parts of the code whose execution may or may not be needed. In some cases, rollback is necessary if the computation turns out to be invalid. However, speculative execution must be applied carefully to real-time systems so that the worst-case execution path is not extended. Deterministic worst-case execution for satisfying hard real-time constraints, and speculative execution with rollback for improving average-case throughput, appear to lie on opposite ends of a spectrum of performance requirements and strategies. Deterministic worst-case execution for satisfying hard real-time constraints, and speculative execution with rollback for improving average-case throughput, appear to lie on opposite ends of a spectrum of performance requirements and strategies. Nonetheless, this thesis shows that there are situations in which speculative execution can improve the performance of a hard real-time system, either by enhancing average performance while not affecting the worst-case, or by actually decreasing the worst-case execution time. The thesis proposes a set of compiler transformation rules to identify opportunities for speculative execution and to transform the code. Proofs for semantic correctness and timeliness preservation are provided to verify safety of applying transformation rules to real-time systems. Moreover, an extensive experiment using simulation of randomly generated real-time programs have been conducted to evaluate applicability and profitability of speculative execution. The simulation results indicate that speculative execution improves average execution time and program timeliness. Finally, a prototype implementation is described in which these transformations can be evaluated for realistic applications

    Fundamental Approaches to Software Engineering

    Get PDF
    This open access book constitutes the proceedings of the 25th International Conference on Fundamental Approaches to Software Engineering, FASE 2022, which was held during April 4-5, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 17 regular papers presented in this volume were carefully reviewed and selected from 64 submissions. The proceedings also contain 3 contributions from the Test-Comp Competition. The papers deal with the foundations on which software engineering is built, including topics like software engineering as an engineering discipline, requirements engineering, software architectures, software quality, model-driven development, software processes, software evolution, AI-based software engineering, and the specification, design, and implementation of particular classes of systems, such as (self-)adaptive, collaborative, AI, embedded, distributed, mobile, pervasive, cyber-physical, or service-oriented applications

    Scientific Grand Challenges: Crosscutting Technologies for Computing at the Exascale - February 2-4, 2010, Washington, D.C.

    Full text link
    • …
    corecore