22 research outputs found

    Extended Computation Tree Logic

    Full text link
    We introduce a generic extension of the popular branching-time logic CTL which refines the temporal until and release operators with formal languages. For instance, a language may determine the moments along a path that an until property may be fulfilled. We consider several classes of languages leading to logics with different expressive power and complexity, whose importance is motivated by their use in model checking, synthesis, abstract interpretation, etc. We show that even with context-free languages on the until operator the logic still allows for polynomial time model-checking despite the significant increase in expressive power. This makes the logic a promising candidate for applications in verification. In addition, we analyse the complexity of satisfiability and compare the expressive power of these logics to CTL* and extensions of PDL

    E/VPL a system for modelling and enacting software processes

    Get PDF
    This research addresses the technical issues involved in specifying and mechanically supporting software development processes and is related to the view of processes as “software”, i.e. as a specifiable and executable entity. Software processes can be described using textual and graphical techniques. This allows interested parties to agree that it reflects the true process, to reason about the process and to identify potential improvements. In designing new or improved processes, an ability to simulate these processes is invaluable. Such simulations, based on the process descriptions, allow one to step through the process tasks in an interactive manner. Thus one can evaluate the effectiveness of processes, assess their behaviour and ask “what-if ’ questions based upon proposed modifications. Simulations with the help of quantitative data, can be run for statistical purposes, where parameters can be varied. Process descriptions can be used as a basis for process automation, as they contain much of the information needed to build a process-centred environment However, many currently available tools, whose origins lie in process definition, allow simulation, but do not generally support real-time execution of process descriptions. This thesis reviews the current state-of-the-art in automated systems that enact software development processes and proposes a system called Enhanced Visual Process Language (E/VPL), which is a graphically-oriented process modelling system. A prototype system has been constructed to implement E/VPL and is evaluated to assess its potential as a process modelling system

    Transactional actors in cooperative information systems

    No full text
    Transaction management in advanced distributed information systems is a very important issue under research scrutiny with many technical and open problems. Most of the research and development activities use conventional database technology to address this important issue. The transaction model presented in this thesis combines attractive properties of the actor model of computation with advanced database transaction concepts in an object-oriented environment to address transactional necessities of cooperative information systems. The novel notion of transaction tree in our model includes subtransactions as well as a rich collection of decision making, chronological ordering, and communication and synchronization constructs for them. Advanced concepts such as blocking/ non_blocking synchronization, vital and non_vital subtransactions , contingency transactions, temporal and value dependencies, and delegation are supported. Compensatable subtransactions are distinguished and early commit is accomplished in order to release resources and facilitate cooperative as well as longduration transactions. Automatic cancel procedures are provided to logically undo the effects of such commits if the global transaction fails. The complexity and semantics-orientation of advanced database applications is our main motivation to design and implement a high-level scripting language for the proposed transaction model. Database programming can gain in performance and problem-orientation if the semantic dependencies between transactions can be expressed directly. Simple and flexible mechanisms are provided for advanced users to query the databases, program their transactions accordingly, and accept weak forms of semantic coherence that allows for more concurrency. The transaction model is grafted onto the concurrent obj ect-oriented programming language Sather developed at UC Berkeley which has a nice high-level syntax, supports advanced obj ect-oriented concepts, and aims toward performance and reusability. W have augmented the language with distributed programming facilities and various types of message passing routines as well as advanced transactions management constructs . The thesis is organized in three parts. The first part introduces the problem, reviews state of the art, and presents the transaction model. The second part describes the scripting language and talks about implementation details. The third part presents the formal semantics of the transaction model using mathematical notations and concludes the thesis

    Verification and synthesis of asynchronous control circuits using petri net unfoldings

    Get PDF
    PhD ThesisDesign of asynchronous control circuits has traditionally been associated with application of formal methods. Event-based models, such as Petri nets, provide a compact and easy to understand way of specifying asynchronous behaviour. However, analysis of their behavioural properties is often hindered by the problem of exponential growth of reachable state space. This work proposes a new method for analysis of asynchronous circuit models based on Petri nets. The new approach is called PN-unfolding segment. It extends and improves existing Petri nets unfolding approaches. In addition, this thesis proposes a new analysis technique for Signal Transition Graphs along with an efficient verification technique which is also based on the Petri net unfolding. The former is called Full State Graph, the latter - STG-unfolding segment. The boolean logic synthesis is an integral part of the asynchronous circuit design process. In many cases, even if the verification of an asynchronous circuit specification has been performed successfully, it is impossible to obtain its implementation using existing methods because they are based on the reachability analysis. A new approach is proposed here for automated synthesis of speed-independent circuits based on the STG-unfolding segment constructed during the verification of the circuit's specification. Finally, this work presents experimental results showing the need for the new Petri net unfolding techniques and confirming the advantages of application of partial order approach to analysis, verification and synthesis of asynchronous circuits.The Research Committee, Newcastle University: Overseas Research Studentship Award

    A distributed information sharing collaborative system (DISCS)

    Get PDF

    Light On String Solving: Approaches to Efficiently and Correctly Solving String Constraints

    Get PDF
    Widespread use of string solvers in formal analysis of string-heavy programs has led to a growing demand for more efficient and reliable techniques which can be applied in this context, especially for real-world cases. Designing an algorithm for the (generally undecidable) satisfiability problem for systems of string constraints requires a thorough understanding of the structure of constraints present in the targeted cases. We target the aforementioned case in different perspectives: We present an algorithm which works by reformulating the satisfiability of bounded word equations as a reachability problem for non-deterministic finite automata. Secondly, we present a transformation-system-based technique to solving string constraints. Thirdly, we investigate benchmarks presented in the literature containing regular expression membership predicates and design a decission procedure for a PSPACE-complete sub-theory. Additionally, we introduce a new benchmarking framework for string solvers and use it to showcase the power of our algorithms via an extensive empirical evaluation over a diverse set of benchmarks

    Investigation and development of a tangible technology framework for highly complex and abstract concepts

    Get PDF
    The ubiquitous integration of computer-supported learning tools within the educational domain has led educators to continuously seek effective technological platforms for teaching and learning. Overcoming the inherent limitations of traditional educational approaches, interactive and tangible computing platforms have consequently garnered increased interest in the pursuit of embedding active learning pedagogies within curricula. However, whilst Tangible User Interface (TUI) systems have been successfully developed to edutain children in various research contexts, TUI architectures have seen limited deployment towards more advanced educational pursuits. Thus, in contrast to current domain research, this study investigates the effectiveness and suitability of adopting TUI systems for enhancing the learning experience of abstract and complex computational science and technology-based concepts within higher educational institutions (HEI)s. Based on the proposal of a contextually apt TUI architecture, the research describes the design and development of eight distinct TUI frameworks embodying innovate interactive paradigms through tabletop peripherals, graphical design factors, and active tangible manipulatives. These computationally coupled design elements are evaluated through summative and formative experimental methodologies for their ability to aid in the effective teaching and learning of diverse threshold concepts experienced in computational science. In addition, through the design and adoption of a technology acceptance model for educational technology (TAM4Edu), the suitability of TUI frameworks in HEI education is empirically evaluated across a myriad of determinants for modelling students’ behavioural intention. In light of the statistically significant results obtained in both academic knowledge gain (μ = 25.8%) and student satisfaction (μ = 12.7%), the study outlines the affordances provided through TUI design for various constituents of active learning theories and modalities. Thus, based on an empirical and pedagogical analyses, a set of design guidelines is defined within this research to direct the effective development of TUI design elements for teaching and learning abstract threshold concepts in HEI adaptations

    Second Annual Workshop on Space Operations Automation and Robotics (SOAR 1988)

    Get PDF
    Papers presented at the Second Annual Workshop on Space Operation Automation and Robotics (SOAR '88), hosted by Wright State University at Dayton, Ohio, on July 20, 21, 22, and 23, 1988, are documented herein. During the 4 days, approximately 100 technical papers were presented by experts from NASA, the USAF, universities, and technical companies. Panel discussions on Human Factors, Artificial Intelligence, Robotics, and Space Systems were held but are not documented herein. Technical topics addressed included knowledge-based systems, human factors, and robotics
    corecore