1,208 research outputs found

    Compensation methods to support cooperative applications: A case study in automated verification of schema requirements for an advanced transaction model

    Get PDF
    Compensation plays an important role in advanced transaction models, cooperative work and workflow systems. A schema designer is typically required to supply for each transaction another transaction to semantically undo the effects of . Little attention has been paid to the verification of the desirable properties of such operations, however. This paper demonstrates the use of a higher-order logic theorem prover for verifying that compensating transactions return a database to its original state. It is shown how an OODB schema is translated to the language of the theorem prover so that proofs can be performed on the compensating transactions

    Causality in concurrent systems

    Full text link
    Concurrent systems identify systems, either software, hardware or even biological systems, that are characterized by sets of independent actions that can be executed in any order or simultaneously. Computer scientists resort to a causal terminology to describe and analyse the relations between the actions in these systems. However, a thorough discussion about the meaning of causality in such a context has not been developed yet. This paper aims to fill the gap. First, the paper analyses the notion of causation in concurrent systems and attempts to build bridges with the existing philosophical literature, highlighting similarities and divergences between them. Second, the paper analyses the use of counterfactual reasoning in ex-post analysis in concurrent systems (i.e. execution trace analysis).Comment: This is an interdisciplinary paper. It addresses a class of causal models developed in computer science from an epistemic perspective, namely in terms of philosophy of causalit

    Remote-scope Promotion: Clarified, Rectified, and Verified

    Get PDF
    Modern accelerator programming frameworks, such as OpenCL, organise threads into work-groups. Remote-scope promotion (RSP) is a language extension recently proposed by AMD researchers that is designed to enable applications, for the first time, both to optimise for the common case of intra-work-group communication (using memory scopes to provide consistency only within a work-group) and to allow occasional inter-work-group communication (as required, for instance, to support the popular load-balancing idiom of work stealing). We present the first formal, axiomatic memory model of OpenCL extended with RSP. We have extended the Herd memory model simulator with support for OpenCL kernels that exploit RSP, and used it to discover bugs in several litmus tests and a work-stealing queue, that have been used previously in the study of RSP. We have also formalised the proposed GPU implementation of RSP. The formalisation process allowed us to identify bugs in the description of RSP that could result in well-synchronised programs experiencing memory inconsistencies. We present and prove sound a new implementation of RSP that incorporates bug fixes and requires less non-standard hardware than the original implementation. This work, a collaboration between academia and industry, clearly demonstrates how, when designing hardware support for a new concurrent language feature, the early application of formal tools and techniques can help to prevent errors, such as those we have found, from making it into silicon
    • ā€¦
    corecore