198,055 research outputs found

    Reduction of Structural Damage from the Thermal Expansion of Concrete Using Multifunctional Materials

    Get PDF
    This study leveraged past successes in the analysis and design of shape memory alloy (SMA) components to address the issue of thermal expansion in concrete structures. Since the SMA used in the current work is relatively cheaper than other common SMAs (less than 50/lbcomparedtoNiTiwhichis50/lb compared to NiTi which is 200/lb due to difficulties in processing), it is anticipated that the findings of the study could be implemented in real infrastructures made of concrete, asphalt concrete, and other complex large infrastructure. Low-cost Fe-SMAs and other multifunctional materials can be considered as a replacement for components made of steel (e.g., in reinforced or plain jointed concrete pavements) to control distresses resulting from thermal expansion during seasonal/daily temperature change. This study conducted a series of finite element (FE) case studies of various configurations of concrete (blocks, slabs, and beams) with embedded, pre-strained SMA rods. This included developing new models to investigate temperature induced deflection in concrete slabs to analyze their curling behavior. It also included investigating the optimal position of the SMA rod and required rod radius. It is hoped that the results of this work could help to design smarter civil infrastructure incorporating multifunctional materials into established civil engineering materials

    Heap Abstractions for Static Analysis

    Full text link
    Heap data is potentially unbounded and seemingly arbitrary. As a consequence, unlike stack and static memory, heap memory cannot be abstracted directly in terms of a fixed set of source variable names appearing in the program being analysed. This makes it an interesting topic of study and there is an abundance of literature employing heap abstractions. Although most studies have addressed similar concerns, their formulations and formalisms often seem dissimilar and some times even unrelated. Thus, the insights gained in one description of heap abstraction may not directly carry over to some other description. This survey is a result of our quest for a unifying theme in the existing descriptions of heap abstractions. In particular, our interest lies in the abstractions and not in the algorithms that construct them. In our search of a unified theme, we view a heap abstraction as consisting of two features: a heap model to represent the heap memory and a summarization technique for bounding the heap representation. We classify the models as storeless, store based, and hybrid. We describe various summarization techniques based on k-limiting, allocation sites, patterns, variables, other generic instrumentation predicates, and higher-order logics. This approach allows us to compare the insights of a large number of seemingly dissimilar heap abstractions and also paves way for creating new abstractions by mix-and-match of models and summarization techniques.Comment: 49 pages, 20 figure

    Shape predicates allow unbounded verification of linearizability using canonical abstraction

    Get PDF
    Canonical abstraction is a static analysis technique that represents states as 3-valued logical structures, and is able to construct finite representations of systems with infinite statespaces for verification. The granularity of the abstraction can be altered by the definition of instrumentation predicates, which derive their meaning from other predicates. We introduce shape predicates for preserving certain structures of the state during abstraction. We show that shape predicates allow linearizability to be verified for concurrent data structures using canonical abstraction alone, and use the approach to verify a stack and two queue algorithms. This contrasts with previous efforts to verify linearizability with canonical abstraction, which have had to employ other techniques as well

    Structural Analysis: Shape Information via Points-To Computation

    Full text link
    This paper introduces a new hybrid memory analysis, Structural Analysis, which combines an expressive shape analysis style abstract domain with efficient and simple points-to style transfer functions. Using data from empirical studies on the runtime heap structures and the programmatic idioms used in modern object-oriented languages we construct a heap analysis with the following characteristics: (1) it can express a rich set of structural, shape, and sharing properties which are not provided by a classic points-to analysis and that are useful for optimization and error detection applications (2) it uses efficient, weakly-updating, set-based transfer functions which enable the analysis to be more robust and scalable than a shape analysis and (3) it can be used as the basis for a scalable interprocedural analysis that produces precise results in practice. The analysis has been implemented for .Net bytecode and using this implementation we evaluate both the runtime cost and the precision of the results on a number of well known benchmarks and real world programs. Our experimental evaluations show that the domain defined in this paper is capable of precisely expressing the majority of the connectivity, shape, and sharing properties that occur in practice and, despite the use of weak updates, the static analysis is able to precisely approximate the ideal results. The analysis is capable of analyzing large real-world programs (over 30K bytecodes) in less than 65 seconds and using less than 130MB of memory. In summary this work presents a new type of memory analysis that advances the state of the art with respect to expressive power, precision, and scalability and represents a new area of study on the relationships between and combination of concepts from shape and points-to analyses

    Using Graph Transformations and Graph Abstractions for Software Verification

    Get PDF
    In this paper we describe our intended approach for the verification of software written in imperative programming languages. We base our approach on model checking of graph transition systems, where each state is a graph and the transitions are specified by graph transformation rules. We believe that graph transformation is a very suitable technique to model the execution semantics of languages with dynamic memory allocation. Furthermore, such representation allows us to investigate the use of graph abstractions, which can mitigate the combinatorial explosion inherent to model checking. In addition to presenting our planned approach, we reason about its feasibility, and, by providing a brief comparison to other existing methods, we highlight the benefits and drawbacks that are expected
    corecore