276 research outputs found

    SmartUnit: Empirical Evaluations for Automated Unit Testing of Embedded Software in Industry

    Full text link
    In this paper, we aim at the automated unit coverage-based testing for embedded software. To achieve the goal, by analyzing the industrial requirements and our previous work on automated unit testing tool CAUT, we rebuild a new tool, SmartUnit, to solve the engineering requirements that take place in our partner companies. SmartUnit is a dynamic symbolic execution implementation, which supports statement, branch, boundary value and MC/DC coverage. SmartUnit has been used to test more than one million lines of code in real projects. For confidentiality motives, we select three in-house real projects for the empirical evaluations. We also carry out our evaluations on two open source database projects, SQLite and PostgreSQL, to test the scalability of our tool since the scale of the embedded software project is mostly not large, 5K-50K lines of code on average. From our experimental results, in general, more than 90% of functions in commercial embedded software achieve 100% statement, branch, MC/DC coverage, more than 80% of functions in SQLite achieve 100% MC/DC coverage, and more than 60% of functions in PostgreSQL achieve 100% MC/DC coverage. Moreover, SmartUnit is able to find the runtime exceptions at the unit testing level. We also have reported exceptions like array index out of bounds and divided-by-zero in SQLite. Furthermore, we analyze the reasons of low coverage in automated unit testing in our setting and give a survey on the situation of manual unit testing with respect to automated unit testing in industry.Comment: In Proceedings of 40th International Conference on Software Engineering: Software Engineering in Practice Track, Gothenburg, Sweden, May 27-June 3, 2018 (ICSE-SEIP '18), 10 page

    CTGEN - a Unit Test Generator for C

    Full text link
    We present a new unit test generator for C code, CTGEN. It generates test data for C1 structural coverage and functional coverage based on pre-/post-condition specifications or internal assertions. The generator supports automated stub generation, and data to be returned by the stub to the unit under test (UUT) may be specified by means of constraints. The typical application field for CTGEN is embedded systems testing; therefore the tool can cope with the typical aliasing problems present in low-level C, including pointer arithmetics, structures and unions. CTGEN creates complete test procedures which are ready to be compiled and run against the UUT. In this paper we describe the main features of CTGEN, their technical realisation, and we elaborate on its performance in comparison to a list of competing test generation tools. Since 2011, CTGEN is used in industrial scale test campaigns for embedded systems code in the automotive domain.Comment: In Proceedings SSV 2012, arXiv:1211.587

    Coyote C++: An Industrial-Strength Fully Automated Unit Testing Tool

    Full text link
    Coyote C++ is an automated testing tool that uses a sophisticated concolic-execution-based approach to realize fully automated unit testing for C and C++. While concolic testing has proven effective for languages such as C and Java, tools have struggled to achieve a practical level of automation for C++ due to its many syntactical intricacies and overall complexity. Coyote C++ is the first automated testing tool to breach the barrier and bring automated unit testing for C++ to a practical level suitable for industrial adoption, consistently reaching around 90% code coverage. Notably, this testing process requires no user involvement and performs test harness generation, test case generation and test execution with "one-click" automation. In this paper, we introduce Coyote C++ by outlining its high-level structure and discussing the core design decisions that shaped the implementation of its concolic execution engine. Finally, we demonstrate that Coyote C++ is capable of achieving high coverage results within a reasonable timespan by presenting the results from experiments on both open-source and industrial software

    A Review of Software Reliability Testing Techniques

    Get PDF
    In the era of intelligent systems, the safety and reliability of software have received more attention. Software reliability testing is a significant method to ensure reliability, safety and quality of software. The intelligent software technology has not only offered new opportunities but also posed challenges to software reliability technology. The focus of this paper is to explore the software reliability testing technology under the impact of intelligent software technology. In this study, the basic theories of traditional software and intelligent software reliability testing were investigated via related previous works, and a general software reliability testing framework was established. Then, the technologies of software reliability testing were analyzed, including reliability modeling, test case generation, reliability evaluation, testing criteria and testing methods. Finally, the challenges and opportunities of software reliability testing technology were discussed at the end of this paper

    LIFTS: Learning Featured Transition Systems

    Get PDF

    Proceedings of the First NASA Formal Methods Symposium

    Get PDF
    Topics covered include: Model Checking - My 27-Year Quest to Overcome the State Explosion Problem; Applying Formal Methods to NASA Projects: Transition from Research to Practice; TLA+: Whence, Wherefore, and Whither; Formal Methods Applications in Air Transportation; Theorem Proving in Intel Hardware Design; Building a Formal Model of a Human-Interactive System: Insights into the Integration of Formal Methods and Human Factors Engineering; Model Checking for Autonomic Systems Specified with ASSL; A Game-Theoretic Approach to Branching Time Abstract-Check-Refine Process; Software Model Checking Without Source Code; Generalized Abstract Symbolic Summaries; A Comparative Study of Randomized Constraint Solvers for Random-Symbolic Testing; Component-Oriented Behavior Extraction for Autonomic System Design; Automated Verification of Design Patterns with LePUS3; A Module Language for Typing by Contracts; From Goal-Oriented Requirements to Event-B Specifications; Introduction of Virtualization Technology to Multi-Process Model Checking; Comparing Techniques for Certified Static Analysis; Towards a Framework for Generating Tests to Satisfy Complex Code Coverage in Java Pathfinder; jFuzz: A Concolic Whitebox Fuzzer for Java; Machine-Checkable Timed CSP; Stochastic Formal Correctness of Numerical Algorithms; Deductive Verification of Cryptographic Software; Coloured Petri Net Refinement Specification and Correctness Proof with Coq; Modeling Guidelines for Code Generation in the Railway Signaling Context; Tactical Synthesis Of Efficient Global Search Algorithms; Towards Co-Engineering Communicating Autonomous Cyber-Physical Systems; and Formal Methods for Automated Diagnosis of Autosub 6000
    corecore