1,883 research outputs found

    A Robust and Universal Metaproteomics Workflow for Research Studies and Routine Diagnostics Within 24 h Using Phenol Extraction, FASP Digest, and the MetaProteomeAnalyzer

    Get PDF
    The investigation of microbial proteins by mass spectrometry (metaproteomics) is a key technology for simultaneously assessing the taxonomic composition and the functionality of microbial communities in medical, environmental, and biotechnological applications. We present an improved metaproteomics workflow using an updated sample preparation and a new version of the MetaProteomeAnalyzer software for data analysis. High resolution by multidimensional separation (GeLC, MudPIT) was sacrificed to aim at fast analysis of a broad range of different samples in less than 24 h. The improved workflow generated at least two times as many protein identifications than our previous workflow, and a drastic increase of taxonomic and functional annotations. Improvements of all aspects of the workflow, particularly the speed, are first steps toward potential routine clinical diagnostics (i.e., fecal samples) and analysis of technical and environmental samples. The MetaProteomeAnalyzer is provided to the scientific community as a central remote server solution at www.mpa.ovgu.de.Peer Reviewe

    Multiple ITS Copies Reveal Extensive Hybridization within Rheum (Polygonaceae), a Genus That Has Undergone Rapid Radiation

    Get PDF
    During adaptive radiation events, characters can arise multiple times due to parallel evolution, but transfer of traits through hybridization provides an alternative explanation for the same character appearing in apparently non-sister lineages. The signature of hybridization can be detected in incongruence between phylogenies derived from different markers, or from the presence of two divergent versions of a nuclear marker such as ITS within one individual.In this study, we cloned and sequenced ITS regions for 30 species of the genus Rheum, and compared them with a cpDNA phylogeny. Seven species contained two divergent copies of ITS that resolved in different clades from one another in each case, indicating hybridization events too recent for concerted evolution to have homogenised the ITS sequences. Hybridization was also indicated in at least two further species via incongruence in their position between ITS and cpDNA phylogenies. None of the ITS sequences present in these nine species matched those detected in any other species, which provides tentative evidence against recent introgression as an explanation. Rheum globulosum, previously indicated by cpDNA to represent an independent origin of decumbent habit, is indicated by ITS to be part of clade of decumbent species, which acquired cpDNA of another clade via hybridization. However decumbent and glasshouse morphology are confirmed to have arisen three and two times, respectively.These findings suggested that hybridization among QTP species of Rheum has been extensive, and that a role of hybridization in diversification of Rheum requires investigation

    Pyrosequencing analysis of fungal assemblages from geographically distant, disparate soils reveals spatial patterning and a core mycobiome

    Get PDF
    Identifying a soil core microbiome is crucial to appreciate the established microbial consortium, which is not usually subjected to change and, hence, possibly resistant/resilient to disturbances and a varying soil context. Fungi are a major part of soil biodiversity, yet the mechanisms driving their large-scale ecological ranges and distribution are poorly understood. The degree of fungal community overlap among 16 soil samples from distinct ecosystems and distant geographic localities (truffle grounds, a Mediterranean agro-silvo-pastoral system, serpentine substrates and a contaminated industrial area) was assessed by examining the distribution of fungal ITS1 and ITS2 sequences in a dataset of 454 libraries. ITS1 and ITS2 sequences were assigned to 1,660 and 1,393 Operational Taxonomic Units (OTUs; as defined by 97% sequence similarity), respectively. Fungal beta-diversity was found to be spatially autocorrelated. At the level of individual OTUs, eight ITS1 and seven ITS2 OTUs were found in all soil sample groups. These ubiquitous taxa comprised generalist fungi with oligotrophic and chitinolytic abilities, suggesting that a stable core of fungi across the complex soil fungal assemblages is either endowed with the capacity of sustained development in the nutrient-poor soil conditions or with the ability to exploit organic resources (such as chitin) universally distributed in soils
    • …
    corecore