798 research outputs found

    Design of a Power-Assist Hemiplegic Wheelchair

    Get PDF
    Current one-handed manual wheelchairs are difficult to propel because one arm can only provide half the power that is ascertained in a two-handed manual wheelchair. A power-assisted hemiplegic (one-sided paralysis) wheelchair was developed that can effectively be propelled with one arm while remaining maneuverable, lightweight, and foldable. An existing manual wheelchair was minimally modified and fitted with powerassisted components that could alternatively be attached to a wide range of manual wheelchairs. The design implements a motor and gear train to power the wheel on the users affected side, encoders on both rear wheels to track wheel position, and a heel interface on the footrest to control steering. A controls program was developed that analyzes wheel position and steering to respond to the motion of the hand-driven wheel. Extensive testing was performed to ensure design integrity. Testing results showed that the prototype successfully met and exceeded predetermined design specifications based on industry standard testing procedures. The design has the potential to deliver increased freedom to a considerable consumer base

    Unlimited-wokspace teleoperation

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Mechanical Engineering, Izmir, 2012Includes bibliographical references (leaves: 100-105)Text in English; Abstract: Turkish and Englishxiv, 109 leavesTeleoperation is, in its brief description, operating a vehicle or a manipulator from a distance. Teleoperation is used to reduce mission cost, protect humans from accidents that can be occurred during the mission, and perform complex missions for tasks that take place in areas which are difficult to reach or dangerous for humans. Teleoperation is divided into two main categories as unilateral and bilateral teleoperation according to information flow. This flow can be configured to be in either one direction (only from master to slave) or two directions (from master to slave and from slave to master). In unlimited-workspace teleoperation, one of the types of bilateral teleoperation, mobile robots are controlled by the operator and environmental information is transferred from the mobile robot to the operator. Teleoperated vehicles can be used in a variety of missions in air, on ground and in water. Therefore, different constructional types of robots can be designed for the different types of missions. This thesis aims to design and develop an unlimited-workspace teleoperation which includes an omnidirectional mobile robot as the slave system to be used in further researches. Initially, an omnidirectional mobile robot was manufactured and robot-operator interaction and efficient data transfer was provided with the established communication line. Wheel velocities were measured in real-time by Hall-effect sensors mounted on robot chassis to be integrated in controllers. A dynamic obstacle detection system, which is suitable for omnidirectional mobility, was developed and two obstacle avoidance algorithms (semi-autonomous and force reflecting) were created and tested. Distance information between the robot and the obstacles was collected by an array of sensors mounted on the robot. In the semi-autonomous teleoperation scenario, distance information is used to avoid obstacles autonomously and in the force-reflecting teleoperation scenario obstacles are informed to the user by sending back the artificially created forces acting on the slave robot. The test results indicate that obstacle avoidance performance of the developed vehicle with two algorithms is acceptable in all test scenarios. In addition, two control models were developed (kinematic and dynamic control) for the local controller of the slave robot. Also, kinematic controller was supported by gyroscope

    Autonomous wheelchair with a smart driving mode and a Wi-Fi positioning system

    Get PDF
    Wheelchairs are an important aid that enhances the mobility of people with several types of disabilities. Therefore, there has been considerable research and development on wheelchairs to meet the needs of the disabled. Since the early manual wheelchairs to their more recent electric powered counterparts, advancements have focused on improving autonomy in mobility. Other developments, such as Internet advancements, have developed the concept of the Internet of Things (IoT). This is a promising area that has been studied to enhance the independent operation of the electrical wheelchairs by enabling autonomous navigation and obstacle avoidance. This dissertation describes shortly the design of an autonomous wheelchair of the IPL/IT (Instituto Politécnico de Leiria/Instituto de Telecomunicações) with smart driving features for persons with visual impairments. The objective is to improve the prototype of an intelligent wheelchair. The first prototype of the wheelchair was built to control it by voice, ocular movements, and GPS (Global Positioning System). Furthermore, the IPL/IT wheelchair acquired a remote control feature which could prove useful for persons with low levels of visual impairment. This tele-assistance mode will be helpful to the family of the wheelchair user or, simply, to a health care assistant. Indoor and outdoor positioning systems, with printed directional Wi-Fi antennas, have been deployed to enable a precise location of our wheelchair. The underlying framework for the wheelchair system is the IPL/IT low cost autonomous wheelchair prototype that is based on IoT technology for improved affordability

    Mechatronic Systems

    Get PDF
    Mechatronics, the synergistic blend of mechanics, electronics, and computer science, has evolved over the past twenty five years, leading to a novel stage of engineering design. By integrating the best design practices with the most advanced technologies, mechatronics aims at realizing high-quality products, guaranteeing at the same time a substantial reduction of time and costs of manufacturing. Mechatronic systems are manifold and range from machine components, motion generators, and power producing machines to more complex devices, such as robotic systems and transportation vehicles. With its twenty chapters, which collect contributions from many researchers worldwide, this book provides an excellent survey of recent work in the field of mechatronics with applications in various fields, like robotics, medical and assistive technology, human-machine interaction, unmanned vehicles, manufacturing, and education. We would like to thank all the authors who have invested a great deal of time to write such interesting chapters, which we are sure will be valuable to the readers. Chapters 1 to 6 deal with applications of mechatronics for the development of robotic systems. Medical and assistive technologies and human-machine interaction systems are the topic of chapters 7 to 13.Chapters 14 and 15 concern mechatronic systems for autonomous vehicles. Chapters 16-19 deal with mechatronics in manufacturing contexts. Chapter 20 concludes the book, describing a method for the installation of mechatronics education in schools

    Automated Guided Vehicle utilising thermal signatures for Human identification and tracking

    Get PDF
    Published ThesisIndustry requires the development of sophisticated autonomous guided vehicles (AGV) with sensory and software capabilities to allow a vision-based awareness of surrounding objects. To achieve this, a closely integrated control system for the AGV together with machine vision capabilities needs to be developed to efficiently and reliably detect objects of interest. Industry application of AGVs require detection of humans and to support that requirement thermal imaging cameras offer a broad set of advantages. The aim of the study is to develop an AGV that uses a thermal imaging camera to detect a human in its environment. To achieve this, a literature study was done to determine the best type of components that should be used, reveal design issues and what characteristics the system must adhere to. LabVIEW was used to simulate AGV movement and operation together with the control system, develop machine vision capable of background noise filtering and verify the machine vision identification and tracking processes. Based on simulated results, the physical system was built and small modificationsmade to accommodate real world variables. The results indicate that a vision-based approach to detect, track and identify a person on a mobile robot in real time is achievable. It was found that LabVIEW is an excellent tool and platform for building the integrated system and expedites design and implementation. A key implication of this study is to show the versatility of thermal imaging as a method to extract a person from its background independently from current light conditions and in situations where full-colour cameras will fail

    An Experimental Study Exploring the Influence of Different Representation of Requirements on Idea Generation

    Get PDF
    This research aims to understand the influence of different representations of requirements on idea generation concerning the quantity, addressment, sketch detail, novelty, and variety of conceptual sketches. To solve design problems, engineers use the needs, desires, and wishes of stakeholders. The requirements document the targets of a project because it contains constraints and design criteria. Also, requirements can be used to track project progress. In essence, specifications are the raison d\u27être of any engineering project. While there is research studying the effect of requirements on the conceptual sketch, little study has focused on the impact of different requirement representations (contextual) on solution development. An experimental study was conducted with 52 undergraduate mechanical engineering students in their fourth year. Two design problems were formulated with three different representations: a problem statement with embedded requirements (Problem Statement), a problem statement and a traditional requirement list (Traditional), and a problem statement with contextualized scrum stories (Contextual). For each design problem, each student received different representations of requirements. They were given 15 minutes each to read and sketch concept solutions. These were then analyzed using quantity, addressment, sketch detail, novelty, and variety. It was found that the use of contextualized scrum story representations had a statistically significant impact on the conceptual sketch in terms of novelty of solution fragments and requirements addressed. Further, there was no significant change in variety, sketch detail, or quantity. The contextualized representation did positively affect all metrics but the sketch detail. Another finding was that there was no relationship between the amount of sketch generated (quantity) and addressment, novelty, variety, or sketch detail. Therefore, it is recommended that requirements be molded as scrum stories in projects. Also, this study has shown that implementation of the agile process in hardware development is not hindered by the contextual representation of requirements

    Design and experimental characterization of l-CADEL v2, an assistive device for elbow motion

    Get PDF
    An experimental characterization is presented for an improved version of a wearable assistive device for elbow motion. The design is revised with respect to requirements for elbow motion assistance, looking at applications both in rehabilitation therapies and exercising of elderly people. A laboratory prototype is built with lightweight, portable, easy-to-use features that are verified with test results, whose discussion is also provided as a characterization of operating performance
    corecore