28 research outputs found

    Automatic Generation Of Supply Chain Simulation Models From Scor Based Ontologies

    Get PDF
    In today\u27s economy of global markets, supply chain networks, supplier/customer relationship management and intense competition; decision makers are faced with a need to perform decision making using tools that do not accommodate the nature of the changing market. This research focuses on developing a methodology that addresses this need. The developed methodology provides supply chain decision makers with a tool to perform efficient decision making in stochastic, dynamic and distributed supply chain environments. The integrated methodology allows for informed decision making in a fast, sharable and easy to use format. The methodology was implemented by developing a stand alone tool that allows users to define a supply chain simulation model using SCOR based ontologies. The ontology includes the supply chain knowledge and the knowledge required to build a simulation model of the supply chain system. A simulation model is generated automatically from the ontology to provide the flexibility to model at various levels of details changing the model structure on the fly. The methodology implementation is demonstrated and evaluated through a retail oriented case study. When comparing the implementation using the developed methodology vs. a traditional simulation methodology approach, a significant reduction in definition and execution time was observed

    Intelligent Simulation Modeling of a Flexible Manufacturing System with Automated Guided Vehicles

    Get PDF
    Although simulation is a very flexible and cost effective problem solving technique, it has been traditionally limited to building models which are merely descriptive of the system under study. Relatively new approaches combine improvement heuristics and artificial intelligence with simulation to provide prescriptive power in simulation modeling. This study demonstrates the synergy obtained by bringing together the "learning automata theory" and simulation analysis. Intelligent objects are embedded in the simulation model of a Flexible Manufacturing System (FMS), in which Automated Guided Vehicles (AGVs) serve as the material handling system between four unique workcenters. The objective of the study is to find satisfactory AGV routing patterns along available paths to minimize the mean time spent by different kinds of parts in the system. System parameters such as different part routing and processing time requirements, arrivals distribution, number of palettes, available paths between workcenters, number and speed of AGVs can be defined by the user. The network of learning automata acts as the decision maker driving the simulation, and the FMS model acts as the training environment for the automata network; providing realistic, yet cost-effective and risk-free feedback. Object oriented design and implementation of the simulation model with a process oriented world view, graphical animation and visually interactive simulation (using GUI objects such as windows, menus, dialog boxes; mouse sensitive dynamic automaton trace charts and dynamic graphical statistical monitoring) are other issues dealt with in the study

    Supply Chain

    Get PDF
    Traditionally supply chain management has meant factories, assembly lines, warehouses, transportation vehicles, and time sheets. Modern supply chain management is a highly complex, multidimensional problem set with virtually endless number of variables for optimization. An Internet enabled supply chain may have just-in-time delivery, precise inventory visibility, and up-to-the-minute distribution-tracking capabilities. Technology advances have enabled supply chains to become strategic weapons that can help avoid disasters, lower costs, and make money. From internal enterprise processes to external business transactions with suppliers, transporters, channels and end-users marks the wide range of challenges researchers have to handle. The aim of this book is at revealing and illustrating this diversity in terms of scientific and theoretical fundamentals, prevailing concepts as well as current practical applications

    A grid computing framework for commercial simulation packages

    Get PDF
    An increased need for collaborative research among different organizations, together with continuing advances in communication technology and computer hardware, has facilitated the development of distributed systems that can provide users non-trivial access to geographically dispersed computing resources (processors, storage, applications, data, instruments, etc.) that are administered in multiple computer domains. The term grid computing or grids is popularly used to refer to such distributed systems. A broader definition of grid computing includes the use of computing resources within an organization for running organization-specific applications. This research is in the context of using grid computing within an enterprise to maximize the use of available hardware and software resources for processing enterprise applications. Large scale scientific simulations have traditionally been the primary benefactor of grid computing. The application of this technology to simulation in industry has, however, been negligible. This research investigates how grid technology can be effectively exploited by simulation practitioners using Windows-based commercially available simulation packages to model simulations in industry. These packages are commonly referred to as Commercial Off-The-Shelf (COTS) Simulation Packages (CSPs). The study identifies several higher level grid services that could be potentially used to support the practise of simulation in industry. It proposes a grid computing framework to investigate these services in the context of CSP-based simulations. This framework is called the CSP-Grid Computing (CSP-GC) Framework. Each identified higher level grid service in this framework is referred to as a CSP-specific service. A total of six case studies are presented to experimentally evaluate how grid computing technologies can be used together with unmodified simulation packages to support some of the CSP-specific services. The contribution of this thesis is the CSP-GC framework that identifies how simulation practise in industry may benefit from the use of grid technology. A further contribution is the recognition of specific grid computing software (grid middleware) that can possibly be used together with existing CSPs to provide grid support. With its focus on end-users and end-user tools, it is intended that this research will encourage wider adoption of grid computing in the workplace and that simulation users will derive benefit from using this technology.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Production planning mechanisms in demand-driven wood remanufacturing industry

    Get PDF
    L'objectif principal de cette thèse est d'étudier le problème de planification de la production dans le contexte d'une demande incertaine, d’un niveau de service variable et d’approvisionnements incontrôlables dans une usine de seconde transformation du bois. Les activités de planification et de contrôle de production sont des tâches intrinsèquement complexes et difficiles pour les entreprises de seconde transformation du bois. La complexité vient de certaines caractéristiques intrinsèques de cette industrie, comme la co-production, les procédés alternatifs divergents, les systèmes de production sur commande (make-to-order), des temps de setup variables et une offre incontrôlable. La première partie de cette thèse propose une plate-forme d'optimisation/simulation permettant de prendre des décisions concernant le choix d'une politique de planification de la production, pour traiter rapidement les demandes incertaines, tout en tenant compte des caractéristiques complexes de l'industrie de la seconde transformation du bois. À cet effet, une stratégie de re-planification périodique basée sur un horizon roulant est utilisée et validée par un modèle de simulation utilisant des données réelles provenant d'un partenaire industriel. Dans la deuxième partie de cette thèse, une méthode de gestion des stocks de sécurité dynamique est proposée afin de mieux gérer le niveau de service, qui est contraint par une capacité de production limitée et à la complexité de la gestion des temps de mise en course. Nous avons ainsi développé une approche de re-planification périodique à deux phases, dans laquelle des capacités non-utilisées (dans la première phase) sont attribuées (dans la seconde phase) afin de produire certains produits jugés importants, augmentant ainsi la capacité du système à atteindre le niveau de stock de sécurité. Enfin, dans la troisième partie de la thèse, nous étudions l’impact d’un approvisionnement incontrôlable sur la planification de la production. Différents scénarios d'approvisionnement servent à identifier les seuils critiques dans les variations de l’offre. Le cadre proposé permet aux gestionnaires de comprendre l'impact de politiques d'approvisionnement proposées pour faire face aux incertitudes. Les résultats obtenus à travers les études de cas considérés montrent que les nouvelles approches proposées dans cette thèse constituent des outils pratiques et efficaces pour la planification de production du bois.The main objective of this thesis is to investigate the production planning problem in the context of uncertain demand, variable service level, and uncontrollable supply in a wood remanufacturing mill. Production planning and control activities are complex and represent difficult tasks for wood remanufacturers. The complexity comes from inherent characteristics of the industry such as divergent co-production, alternative processes, make-to-order, short customer lead times, variable setup time, and uncontrollable supply. The first part of this thesis proposes an optimization/simulation platform to make decisions about the selection of a production planning policy to deal swiftly with uncertain demands, under the complex characteristics of the wood remanufacturing industry. For this purpose, a periodic re-planning strategy based on a rolling horizon was used and validated through a simulation model using real data from an industrial partner. The computational results highlighted the significance of using the re-planning model as a practical tool for production planning under unstable demands. In the second part, a dynamic safety stock method was proposed to better manage service level, which was threatened by issues related to limited production capacity and the complexity of setup time. We developed a two-phase periodic re-planning approach whereby idle capacities were allocated to produce more important products thus increasing the realization of safety stock level. Numerical results indicated that the solution of the two-phase method was superior to the initial method in terms of backorder level as well as inventory level. Finally, we studied the impact of uncontrollable supply on demand-driven wood remanufacturing production planning through an optimization and simulation framework. Different supply scenarios were used to identify the safety threshold of supply changes. The proposed framework provided managers with a novel advanced planning approach that allowed understanding the impact of supply policies to deal with uncertainties. In general, the wood products industry offers a rich environment for dealing with uncertainties for which the literature fails to provide efficient solutions. Regarding the results that were obtained through the case studies, we believe that approaches proposed in this thesis can be considered as novel and practical tools for wood remanufacturing production planning

    Discrete Event Simulations

    Get PDF
    Considered by many authors as a technique for modelling stochastic, dynamic and discretely evolving systems, this technique has gained widespread acceptance among the practitioners who want to represent and improve complex systems. Since DES is a technique applied in incredibly different areas, this book reflects many different points of view about DES, thus, all authors describe how it is understood and applied within their context of work, providing an extensive understanding of what DES is. It can be said that the name of the book itself reflects the plurality that these points of view represent. The book embraces a number of topics covering theory, methods and applications to a wide range of sectors and problem areas that have been categorised into five groups. As well as the previously explained variety of points of view concerning DES, there is one additional thing to remark about this book: its richness when talking about actual data or actual data based analysis. When most academic areas are lacking application cases, roughly the half part of the chapters included in this book deal with actual problems or at least are based on actual data. Thus, the editor firmly believes that this book will be interesting for both beginners and practitioners in the area of DES

    The International Conference on Industrial Engineeering and Business Management (ICIEBM)

    Get PDF

    Reusability in manufacturing, supported by value net and patterns approaches

    Get PDF
    The concept of manufacturing and the need or desire to create artefacts or products is very, very old, yet it is still an essential component of all modem economies. Indeed, manufacturing is one of the few ways that wealth is created. The creation or identification of good quality, sustainable product designs is fundamental to the success of any manufacturing enterprise. Increasingly, there is also a requirement for the manufacturing system which will be used to manufacture the product, to be designed (or redesigned) in parallel with the product design. Many different types of manufacturing knowledge and information will contribute to these designs. A key question therefore for manufacturing companies to address is how to make the very best use of their existing, valuable, knowledge resources. […] The research reported in this thesis examines ways of reusing existing manufacturing knowledge of many types, particularly in the area of manufacturing systems design. The successes and failures of reported reuse programmes are examined, and lessons learnt from their experiences. This research is therefore focused on identifying solutions that address both technical and non-technical requirements simultaneously, to determine ways to facilitate and increase the reuse of manufacturing knowledge in manufacturing system design. [Continues.
    corecore