2,030 research outputs found

    Federated Robust Embedded Systems: Concepts and Challenges

    Get PDF
    The development within the area of embedded systems (ESs) is moving rapidly, not least due to falling costs of computation and communication equipment. It is believed that increased communication opportunities will lead to the future ESs no longer being parts of isolated products, but rather parts of larger communities or federations of ESs, within which information is exchanged for the benefit of all participants. This vision is asserted by a number of interrelated research topics, such as the internet of things, cyber-physical systems, systems of systems, and multi-agent systems. In this work, the focus is primarily on ESs, with their specific real-time and safety requirements. While the vision of interconnected ESs is quite promising, it also brings great challenges to the development of future systems in an efficient, safe, and reliable way. In this work, a pre-study has been carried out in order to gain a better understanding about common concepts and challenges that naturally arise in federations of ESs. The work was organized around a series of workshops, with contributions from both academic participants and industrial partners with a strong experience in ES development. During the workshops, a portfolio of possible ES federation scenarios was collected, and a number of application examples were discussed more thoroughly on different abstraction levels, starting from screening the nature of interactions on the federation level and proceeding down to the implementation details within each ES. These discussions led to a better understanding of what can be expected in the future federated ESs. In this report, the discussed applications are summarized, together with their characteristics, challenges, and necessary solution elements, providing a ground for the future research within the area of communicating ESs

    Modelling flexible manufacturing systems through discrete event simulation

    Get PDF
    As customisation and product diversification are becoming standard, industry is looking for strategies to become more adaptable in responding to customer’s needs. Flexible manufacturing systems (FMS) provide a unique capability where there is a need to provide efficiency through production flexibility. Full potential of FMS development is difficult to achieve due to the variability of components within this complex manufacturing system. It has been recognised that there is a requirement for decision support tools to address different aspects of FMS development. Discrete event simulation (DES) is the most common tool used in manufacturing sector for solving complex problems. Through systematic literature review, the need for a conceptual framework for decision support in FMS using DES has been identified. Within this thesis, the conceptual framework (CF) for decision support for FMS using DES has been proposed. The CF is designed based on decision-making areas identified for FMS development in literature and through industry stakeholder feedback: set-up, flexibility and schedule configuration. The CF has been validated through four industrial simulation case studies developed as a part of implementation of a new FMS plant in automotive sector. The research focuses on: (1) a method for primary data collection for simulation validated through a case study of material handling robot behaviour in FMS; (2) an approach for evaluation of optimal production set-up for industrial FMS with DES; (3) a DES based approach for testing FMS flexibility levels; (4) an approach for testing scheduling in FMS with the use of DES. The study has supported the development of systematic approach for decision making in FMS development using DES. The approach provided tools for evidence based decision making in FMS

    The role of organisational culture during the implementation of internal succession planning within Malaysian research universities

    Get PDF
    Succession planning is not new to academia and many institutions have supported these programs for years. Few, however, have adopted formal succession planning strategies that are both strategic and deliberate and encompass the full spectrum of succession planning activities. However, less is understood about the role of culture on succession planning within public universities in Malaysia. Nevertheless; there is an absence of a comprehensive conceptual model of the culture-succession relationship in the literature that includes the impact of moderators such as national culture. A mixed mode design was adopted by the study where qualitative data was first collected, analyzed and then used to develop a survey instrument for the quantitative phase of the study. The study surveyed 375 academic staff of the five research universities in Malaysia, and the results were analyzed using the IBM SPSS for Windows and PLS-SEM. A structural model was built to identify the relationship between the organisational culture and succession planning and the moderating effect of the national culture in public research universities. The study's findings showed that succession planning is still new to public universities in Malaysia and training and development are still unstructured. Although there was a positive and significant relationship between organisational culture and succession planning, whereas, findings suggested national culture showed a moderating effect on the relationship of organisational culture and succession planning. The model can help to analyze organisational culture in order to change the Malaysian public universities’ strategy to implement succession planning

    Intelligent systems in manufacturing: current developments and future prospects

    Get PDF
    Global competition and rapidly changing customer requirements are demanding increasing changes in manufacturing environments. Enterprises are required to constantly redesign their products and continuously reconfigure their manufacturing systems. Traditional approaches to manufacturing systems do not fully satisfy this new situation. Many authors have proposed that artificial intelligence will bring the flexibility and efficiency needed by manufacturing systems. This paper is a review of artificial intelligence techniques used in manufacturing systems. The paper first defines the components of a simplified intelligent manufacturing systems (IMS), the different Artificial Intelligence (AI) techniques to be considered and then shows how these AI techniques are used for the components of IMS

    Intelligent Simulation Modeling of a Flexible Manufacturing System with Automated Guided Vehicles

    Get PDF
    Although simulation is a very flexible and cost effective problem solving technique, it has been traditionally limited to building models which are merely descriptive of the system under study. Relatively new approaches combine improvement heuristics and artificial intelligence with simulation to provide prescriptive power in simulation modeling. This study demonstrates the synergy obtained by bringing together the "learning automata theory" and simulation analysis. Intelligent objects are embedded in the simulation model of a Flexible Manufacturing System (FMS), in which Automated Guided Vehicles (AGVs) serve as the material handling system between four unique workcenters. The objective of the study is to find satisfactory AGV routing patterns along available paths to minimize the mean time spent by different kinds of parts in the system. System parameters such as different part routing and processing time requirements, arrivals distribution, number of palettes, available paths between workcenters, number and speed of AGVs can be defined by the user. The network of learning automata acts as the decision maker driving the simulation, and the FMS model acts as the training environment for the automata network; providing realistic, yet cost-effective and risk-free feedback. Object oriented design and implementation of the simulation model with a process oriented world view, graphical animation and visually interactive simulation (using GUI objects such as windows, menus, dialog boxes; mouse sensitive dynamic automaton trace charts and dynamic graphical statistical monitoring) are other issues dealt with in the study

    Design and development of a hybrid flexible manufacturing system : a thesis presented in fulfilment of the requirements for the degree of Master of Technology at Massey University

    Get PDF
    Volumes 1 and 2 merged.The ability of a manufacturing environment to be able to modify itself and to incorporate a wide variety of heterogeneous multi-vendor devices is becoming a matter of increasing importance in the modern manufacturing enterprise. Many companies in the past have been forced to procure devices which are compatible with existing systems but are not as suitable as other less compatible devices. The inability to be able to integrate new devices into an existing company has made such enterprises dependent on one vendor and has decreased their ability to be able to respond to changes in the market. It is said that typically 60% of orders received in a company are new orders. Therefore the ability of a company to be able to reconfigure itself and respond to such demands and reintegrate itself with new equipment requirements is of paramount importance. In the past much effort has been made towards the integration of shop floor devices in industry whereby such devices can communicate with each other so that certain tasks are able to be achieved in a single environment. Up until recently however much of this was carried out in a very much improvised fashion with no real structure existing within the factory. This meant that once the factory was set up it became a hard-wired entity and extensibility and modiflability were difficult indeed. When formalised Computer Integrated Manufacturing (CIM) system architectures were developed it was found that although they solved many existing shortcomings there were inherent problems associated with these as well. What became apparent was that a fresh approach was required that took the advantages of existing architectures and combined them into an new architecture that not only capitalised on these advantages but also nullified the weaknesses of the existing systems. This thesis outlines the design of a new FMS architecture and its implementation in a factory environment on a PC based system

    Learning-based scheduling of flexible manufacturing systems using ensemble methods

    Get PDF
    Dispatching rules are commonly applied to schedule jobs in Flexible Manufacturing Systems (FMSs). However, the suitability of these rules relies heavily on the state of the system; hence, there is no single rule that always outperforms the others. In this scenario, machine learning techniques, such as support vector machines (SVMs), inductive learning-based decision trees (DTs), backpropagation neural networks (BPNs), and case based-reasoning (CBR), offer a powerful approach for dynamic scheduling, as they help managers identify the most appropriate rule in each moment. Nonetheless, different machine learning algorithms may provide different recommendations. In this research, we take the analysis one step further by employing ensemble methods, which are designed to select the most reliable recommendations over time. Specifically, we compare the behaviour of the bagging, boosting, and stacking methods. Building on the aforementioned machine learning algorithms, our results reveal that ensemble methods enhance the dynamic performance of the FMS. Through a simulation study, we show that this new approach results in an improvement of key performance metrics (namely, mean tardiness and mean flow time) over existing dispatching rules and the individual use of each machine learning algorithm

    Methodologies for CIM systems integration in small batch manufacturing

    Get PDF
    This thesis is concerned with identifying the problems and constraints faced by small batch manufacturing companies during the implementation of Computer Integrated Manufacturing (CIM). The main aim of this work is to recommend generic solutions to these problems with particular regard to those constraints arising because of the need for ClM systems integration involving both new and existing systems and procedures. The work has involved the application of modern computer technologies, including suitable hardware and software tools, in an industrial environment. Since the research has been undertaken with particular emphasis on the industrial implementor's viewpoint, it is supported by the results of a two phased implementation of computer based control systems within the machine shop of a manufacturing company. This involved the specific implementation of a Distributed Numerical Control system on a single machine in a group technology cell of machines followed by the evolution of this system into Cell and Machine Management Systems to provide a comprehensive decision support and information distribution facility for the foremen and uperators within the cell. The work also required the integration of these systems with existing Factory level manufacturing control and CADCAM functions. Alternative approaches have been investigated which may have been applicable under differing conditions and the implications that this specific work has for CIM systems integration in small batch manufacturing companies evaluated with regard not only to the users within an industrial company but also the systems suppliers external to the company. The work has resulted in certain generic contributions to knowledge by complementing ClM systems integration research with regard to problems encountered; cost implications; the use of appropriate methodologies including the role of emerging international standard methods, tools and technologies and also the importance of 'human integration' when implementing CIM systems in a real industrial situation

    TEMPORAL LOGIC AS A SIMULATION LANGUAGE

    Get PDF
    We advocate the use of temporal logic instead of the first-order logic in rules of knowledge-based simulation systems. We argue that this provides several advantages that will be discussed in the paper. We show how temporal logic is used in simulation by considering language PTL based on temporal logic programming.Information Systems Working Papers Serie
    • …
    corecore