102,179 research outputs found

    TRIZ based Interface Conflict Resolving Strategies for Modular Product Architectures

    Get PDF
    In product development, the chosen product architecture often possesses characteristics of both modular and integral design. Within a modular architecture, a Function-Behavior-Structure (FBS) model has been applied to describe modules and their interfaces. To resolve emerging interface conflicts, several strategies based on both modular and integral action have been formulated. The strategies encompass TRIZ methods, as they focus strongly on product innovation. The purpose of the presented study is to combine TRIZ techniques and FBS modeling while trying to solve interface conflicts at a low level of abstraction. The interface conflict resolving strategies have been applied on an industrial case study successfull

    Numerical modelling and simulation in sheet metal forming

    Get PDF
    The application of numerical modelling and simulation in manufacturing technologies is looking back over about a 20–30 years history. In recent years, the role of modelling and simulation in engineering and in manufacturing industry has been continuously increasing. It is well known that during manufacturing processes simultaneous the effect of many different parameters can be observed. This is the reason why in former years, detailed analysis of manufacturing processes could have been done only by time-consuming and expensive trial-and-error methods. Due to the recent developments in the methods of modelling and simulation, as well as in computational facilities, modelling and simulation has become an everyday tool in engineering practice. Besides the aforementioned facts, the emerging role of modelling and simulation can also be explained by the growing globalisation and competition of the world market requiring shorter lead times and more cost effective solutions. In spite the enormous development of hardware and software facilities, the exclusive use of numerical modelling still seems to be very time- and cost consuming, and there is still often a high scepticism about the results among industrialists. Therefore, the purpose of this paper is to overview the present situation of numerical modelling and simulation in sheet metal forming, mainly from the viewpoint of scientific research and industrial applications

    Universal attraction force-inspired freeform surface modeling for 3D sketching

    Get PDF
    This paper presents a novel freeform surface modeling method to construct a freeform surface from 3D sketch. The approach is inspired by Newton’s universal attraction force law to construct a surface model from rough boundary curves and unorganized interior characteristic curves which may cross the boundary curves or not. Based on these unorganized curves, an initial surface can be obtained for conceptual design and it can be improved later in a commercial package. The approach has been tested with examples and it is capable of dealing with unorganized design curves for surface modeling

    Integrated Process Simulation and Die Design in Sheet Metal Forming

    Get PDF
    During the recent 10-15 years, Computer Aided Process Planning and Die Design evolved as one of the most important engineering tools in sheet metal forming, particularly in the automotive industry. This emerging role is strongly emphasized by the rapid development of Finite Element Modelling, as well. The purpose of this paper is to give a general overview about the recent achievements in this very important field of sheet metal forming and to introduce some special results in this development activity. Therefore, in this paper, an integrated process simulation and die design system developed at the University of Miskolc, Department of Mechanical Engineering will be analysed. The proposed integrated solutions have great practical importance to improve the global competitiveness of sheet metal forming in the very important segment of industry. The concept described in this paper may have specific value both for process planning and die design engineers

    Paper-based Mixed Reality Sketch Augmentation as a Conceptual Design Support Tool

    Get PDF
    This undergraduate student paper explores usage of mixed reality techniques as support tools for conceptual design. A proof-of-concept was developed to illustrate this principle. Using this as an example, a small group of designers was interviewed to determine their views on the use of this technology. These interviews are the main contribution of this paper. Several interesting applications were determined, suggesting possible usage in a wide range of domains. Paper-based sketching, mixed reality and sketch augmentation techniques complement each other, and the combination results in a highly intuitive interface

    Recent Achievements in Numerical Simulation in Sheet Metal Forming Processes

    Get PDF
    Purpose of this paper: During the recent 10-15 years, Computer Aided Process Planning and Die Design evolved as one of the most important engineering tools in sheet metal forming, particularly in the automotive industry. This emerging role is strongly emphasized by the rapid development of Finite Element Modelling, as well. The purpose of this paper is to give a general overview about the recent achievements in this very important field of sheet metal forming and to introduce some special results in this development activity. Design/methodology/approach: Concerning the CAE activities in sheet metal forming, there are two main approaches: one of them may be regarded as knowledge based process planning, whilst the other as simulation based process planning. The author attempts to integrate these two separate developments in knowledge and simulation based approach by linking commercial CAD and FEM systems. Findings: Applying the above approach a more powerful and efficient process planning and die design solution can be achieved radically reducing the time and cost of product development cycle and improving product quality. Research limitations: Due to the different modelling approaches in CAD and FEM systems, the biggest challenge is to enhance the robustness of data exchange capabilities between various systems to provide an even more streamlined information flow. Practical implications: The proposed integrated solutions have great practical importance to improve the global competitiveness of sheet metal forming in the very important segment of industry. Originality/value: The concept described in this paper may have specific value both for process planning and die design engineers

    Introduction to TIPS: a theory for creative design

    Get PDF
    A highly intriguing problem in combining artificial intelligence and engineering design is automation of the creative and innovative phases of the design process. This paper gives a brief introduction to the theory of inventive problem solving (TIPS) selected as a theoretical basis of the authors' research efforts in this field. The research is conducted in the Stevin Project of the Knowledge-Based System Group of the University of Twente (Enschede, The Netherlands) in cooperation with the Invention Machine Laboratory (Minsk, Belarus). This collaboration aims at developing a formal basis for the creation of an automated reasoning system to support creative engineering design

    A dynamics-driven approach to precision machines design for micro-manufacturing and its implementation perspectives

    Get PDF
    Precision machines are essential elements in fabricating high quality micro products or micro features and directly affect the machining accuracy, repeatability and efficiency. There are a number of literatures on the design of industrial machine elements and a couple of precision machines commercially available. However, few researchers have systematically addressed the design of precision machines from the dynamics point of view. In this paper, the design issues of precision machines are presented with particular emphasis on the dynamics aspects as the major factors affecting the performance of the precision machines and machining processes. This paper begins with a brief review of the design principles of precision machines with emphasis on machining dynamics. Then design processes of precision machines are discussed, and followed by a practical modelling and simulation approaches. Two case studies are provided including the design and analysis of a fast tool servo system and a 5-axis bench-top micro-milling machine respectively. The design and analysis used in the two case studies are formulated based on the design methodology and guidelines
    corecore