9 research outputs found

    ERP implementation methodologies and frameworks: a literature review

    Get PDF
    Enterprise Resource Planning (ERP) implementation is a complex and vibrant process, one that involves a combination of technological and organizational interactions. Often an ERP implementation project is the single largest IT project that an organization has ever launched and requires a mutual fit of system and organization. Also the concept of an ERP implementation supporting business processes across many different departments is not a generic, rigid and uniform concept and depends on variety of factors. As a result, the issues addressing the ERP implementation process have been one of the major concerns in industry. Therefore ERP implementation receives attention from practitioners and scholars and both, business as well as academic literature is abundant and not always very conclusive or coherent. However, research on ERP systems so far has been mainly focused on diffusion, use and impact issues. Less attention has been given to the methods used during the configuration and the implementation of ERP systems, even though they are commonly used in practice, they still remain largely unexplored and undocumented in Information Systems research. So, the academic relevance of this research is the contribution to the existing body of scientific knowledge. An annotated brief literature review is done in order to evaluate the current state of the existing academic literature. The purpose is to present a systematic overview of relevant ERP implementation methodologies and frameworks as a desire for achieving a better taxonomy of ERP implementation methodologies. This paper is useful to researchers who are interested in ERP implementation methodologies and frameworks. Results will serve as an input for a classification of the existing ERP implementation methodologies and frameworks. Also, this paper aims also at the professional ERP community involved in the process of ERP implementation by promoting a better understanding of ERP implementation methodologies and frameworks, its variety and history

    Business process modelling in ERP implementation literature review

    Get PDF
    Business processes are the backbone of any Enterprise Resource Planning (ERP) implementation. Business process modelling (BPM) has become essential for modern, process driven enterprises due to the vibrant business environments. As a consequence enterprises are dealing with a substantial rate of organizational and business processes change. Business process modelling enables a common understanding and analysis of the business processes, which is the first step in every ERP implementation methodology (blueprint phase). In order to represent enterprise processes models in an accurate manner, it is paramount to choose a right business process modeling technique and tool. The problem of many ERP projects rated as unsuccessful is directly connected to a lack of use of business process models and notations during the blueprint phase. Also, blueprint implementation phase is crucial in order to fit planned processes in an organization with processes implemented in the solution. However, business analysts and ERP implementation professionals have substantial difficulties to navigate through a large number of theoretical models and representational notations that have been proposed for business process modeling (BPM). As the availability of different business process modeling references is huge, it is time consuming to make review and classification of all modeling techniques. Therefor, in reality majority of ERP implementations blueprint documents have no business process modeling included in generating blueprint documents. Choosing the right model comprise the purpose of the analysis and acquaintance of the available process modelling techniques and tools. The number of references on business modelling is quit large, so it is very hard to make a decision which modeling notation or technique to use. The main purpose of this paper is to make a review of business process modelling literature and describe the key process modelling techniques. The focus will be on all business process modeling that could be used in ERP implementations, specifically during the blueprint phase of the implementation process. Detailed review of BPM (Business process modeling) theoretical models and representational notations, should assist decision makers and ERP integrators in comparatively evaluating and selecting suitable modeling approaches

    A framework for co-located collaborative business process modelling using touch technologies

    Get PDF
    In recent years the field of Business Process Modelling (BPM) has gained increasing attention from both the business and research communities. One of the primary drivers for BPM is the improved understanding of Business Processes (BPs) and the competitive advantage gained over competitors. In addition, BPM can improve communication in an organisation and facilitate increased support for change management. BPM is a collaborative activity that needs to be carried out in a team environment, and Collaborative Business Process Modelling (CBPM) promotes improved readability, accuracy and quality of process models as well as a reduced workload for modellers. In spite of the increased popularity of CBPM, there is limited research related to the collaborative nature of the modelling tasks performed by modellers and specifically to the synchronisation of shared process models. In addition, tools and techniques to support CBPM do not support this synchronisation effectively or efficiently. This study proposes a conceptual framework for CBPM using touch technologies in a colocated collaborative environment. The main research problem addressed by this study is that modellers experience difficulties conducting BPM activities in a co-located collaborative environment. In order to address the research problem and clarify and elaborate on the problems of CBPM, a two-fold approach was undertaken. Firstly, after an in-depth literature review, a BPM survey was designed and then sent to modellers in South African Information Technology (IT) consulting companies in order to provide a more in-depth understanding of the status and challenges of CBPM in IT consulting organisations. The results revealed that available BPM software do not adequately cater for CBPM and software tools do not enforce versioning and synchronisation. In addition, hardware constraints were reported as well as problems with integrating different parts of the process model that the modellers were working on. The results of the survey also showed that the positive aspects of CBPM are that ideas could be shared and overall there is a better understanding of the BPs being modelled. The second part of the problem elaboration consisted of usability field studies with participants from both education and industry using a traditional popular BPM software tool, Enterprise Architect (EA). Whilst several benefits of CBPM were confirmed, several challenges were encountered, particularly with regard to the integration and synchronisation of models. To overcome the problems of CBPM, a framework was developed that allows for co-located CBPM using tablet PCs. The framework includes a developed prototype of the BPMTouch software which runs on tablet PCs, as well as some theoretical aspects of CBPM. The BPMTouch software supports effective and efficient CBPM and the synchronisation of process models since it allows multiple modellers to work together on one BP model, with each modeller using his/her own tablet. If one modeller makes changes to the model, the changes are immediately reflected on the tablets of the other modellers since the changes to the model are updated in real time. Modellers cannot draw on the same model simultaneously, however, everyone can see what the active modeller (active participant with the green flag) is doing. Other participants can then become the active modeller and make changes to the model once the flag has been released and re-allocated. The results from the field studies, industry surveys and usability evaluations were all incorporated into the BPMTouch software tool design and into the aspects of CBPM in order to assist with the process of co-located CBPM using touch technologies. Usability evaluations were carried out in which industry and student participants used BPMTouch to create an integrated model and simultaneously and synchronously create a process model. The evaluations of the BPMTouch prototype revealed that participants prefer this system over traditional BPM software since the BPMTouch removes the need for post modelling integration. The theoretical contribution of the framework consists of aspects proposing that organisations should take the potential benefits and challenges of CBPM into consideration and address the Critical Success Factors (CSFs) before embarking on a CBPM project. These aspects can help with decisions relating to CBPM. The use of this framework can improve the quality of process models, reduce the workload of modellers and in this way increase the success rate of CBPM projects

    A conceptual framework for capability sourcing modeling

    Get PDF
    Companies need to acquire the right capabilities from the right source, and the right shore, at the right cost to improve their competitive position. Capability sourcing is an organizing process to gain access to best-in-class capabilities for all activities in a firm's value chain to ensure long-term competitive advantage. Capability sourcing modeling is a technique that helps investigating sourcing alternative solutions to facilitate strategic sourcing decision making. Our position is applying conceptual models as intermediate artifacts which are schematic descriptions of sourcing alternatives based on organization's capabilities. The contribution of this paper is introducing a conceptual framework in the form of five views (to organize all perspectives) and a conceptualisation (to formulate a language) for capability sourcing modelling

    The creation of business architecture heat maps to support strategy-aligned organizational decisions

    Get PDF
    The realization of strategic alignment within the business architecture has become increasingly important for companies. Indeed, it facilitates business-IT alignment as a well-designed business architecture helps both to identify the appropriate requirements for IT systems and to discover new business opportunities that can be realized by IT. However, there is a lack of alignment techniques that support organizational (re) design decisions during the operation phase as the actual performance of business architecture elements is neglected. Capability heat maps provide a useful starting point in this respect as they focus on the creation of a hierarchy of prioritized capabilities, which are characterized by a performance measure. In this paper, these techniques will be extended to support strategy-aligned decisions within the business architecture. The identification of the relevant business architecture elements is based on state-of-the-art enterprise modelling languages, which enable the development of enterprise models on distinct layers of the business architecture. Strategic alignment between these elements will be realized by using prioritization according to the Analytic Hierarchy Process (AHP), while performance measurement will enable the creation of a proper decision support system. Afterwards, the proposed heat map will be applied on a case example to illustrate its potential use. This results in the completion of a first build-and-evaluate loop within the Design Science methodology

    From strategy to operations and vice-versa: a bridge that needs an Island

    Get PDF
    The Information Systems support particularly for Tactical Management is not an explicit or distinct term. There are many concepts and artifacts that are providing contemporary foundations for Information systems in the companies, both in theory and in practice. We tried to analyze different approaches, in order to determine their support specifically for tactical management. Out of this attempt, the realization is that these seemingly overarching bridges from Operations to Strategy and vice-versa appear to be overshooting an important island - the tactical management level, particularly in recognizing its distinct characteristics to be served with adjusted concepts and solutions. We see tactical management as the managerial function that implements strategies, by deploying and utilizing specific resources from the operational level in order to gain that specific competitive advantage prescribed in the strategy. The diversity of approaches and tools is provided for the strategic and overwhelmingly for operational management issues. This theoretical research is analyzing the specifics of the Sense-and-Respond Framework on a tactical level towards perfecting the sensing part of it (in terms of sustaining "low latency" (instead of operational "no latency") and striving for tactical need for "right-time" (instead of the current and hot operational "real-time") information), and how it is being closed in theory and practice on a strategic, tactical and operational level with 'endings'. Also, the tactical management characteristic of working in unpredicted environment and needing high adaptability, requires involvement of concepts and approaches that provide adaptability such as, in our opinion, the Sense-and-Respond managerial concept and the SIDA loop. To some extent, tactical management is being assimilated either by strategy or by operations, as this research confirms. Hopefully, we will result with increased perceptiveness that tactical management needs special theoretical and practical focus and output propositions. The specific sensing and interpreting, deciding and acting, in the role of a tactical manager is neither only automatic, data-capturing process nor a person-independent or company-independent one. If, and after this viewpoint is shared, much more efforts will be streamlined in the tactical management "how" to do "what" is expected, on theoretical and on practical level

    Meeting point of strategy and operations: tactical management sense and response framework enhancement

    Get PDF
    We recognize a problem of work overload in every managerial position nowadays. This is complemented with data overload, and still somehow, information inadequacy. We recognize the problem of rather clear strategic or business plan expectations and inability to meet them. We also recognize the problem of complexity of issues every manager has to deal with in all of their diversity. All of these elements persisting in an uncertain and unpredictable environment of today's business, technology and economy, where planning is trading places with structuring, modularizing and preparing oneself in being adaptive to any given circumstances, especially in terms of tactics, denote longing for multidimensional support. There are various efforts and products to automatize and enrich the data in order to give basis for better decision-making and problem solving. Also, there are frameworks to formalize and verbalize the strategic or business plan expectations and targets with respective performance measurement in order to point out the direction where a business unit/company should be headed. And quite a lot is being done on a subject-specific areas such as: Alignment of IT and Strategy, Business Operations and Strategy,. But the perceived "boiling" zone of tactical management is somehow un-addressed, both in theory and with feasible artifacts. Tactical Management as the managerial function that implements strategies and deploys and utilizes specific resources from the operational level in order to gain that specific advantage prescribed in the strategy has both differentiating and uniting characteristics when compared to operations and strategy. Furthermore, if standing in the shoes of a tactical manager, what one will see as work description, will be overwhelming crossroads of unmatched information flows in structure, depths, sources, manners, complexity, timings, and expectations. How to perceive, organize, handle and utilize all that landscape with what is given, and be able to handle it dynamically, appropriately and with least expenditures, is what we are aiming for. It's neither straightforward, nor an easy, automated task. For anyone. It is both company-and person-dependent task. This research focuses on tactical management, from the perspective of the individual manager. We believe that by Enhancing the Sense-and-Respond Framework on a tactical level we will assist the individual tactical manager with increased adaptability and handling complexity

    Representation of business processes at multiple levels of abstraction (strategic, tactical and operational) during the requirements elicitation stage of a software project, and the measurement of their functional size with ISO 19761

    Get PDF
    This thesis aims at helping software engineers and business analysts to better model business processes when those models are meant to be used: for software requirements specification, and for functional size measurement purposes. The research goal of this thesis is to contribute to the representation of business processes for its use during the requirements elicitation stage of a software project. To achieve this goal, two research objectives are clearly defined: 1. To propose a novel modeling approach that generates business process models intended to be used in a software requirements elicitation activity. The modeling approach should not significantly increase the complexity of the modeling notations used to represent the business processes; and it must allow the active participation of the various stakeholders involved in a typical software project in order to represent, in a consistent and structured way, their needs and constraints. 2. To develop a procedure to measure the functional size of a software application from the business process models representing it. This measurement procedure should be compatible with the COSMIC ISO 19761 standard; and it should be able to be used independently of the modeling notation used to represent the business process. To achieve the first objective, this thesis proposes a novel modeling approach (coined BPM+) that models business processes at three levels of abstraction: strategic, tactical and operational. An a priori version of BPM+ was designed based on the findings of the literature review. This a priori version was iteratively refined through a pilot case study in industry, a series of ontological analyses, and a survey of experts. As a result, a reviewed version of BPM+ was proposed. The reviewed version was evaluated through a second case study in industry. Therefore, the design of BPM+ has been based on a triangulation of evidences obtained from various sources. To achieve the second objective, the measurement procedure was developed from an analytical comparison between the specifications of COSMIC and those of the modeling notations selected for this research (i.e. BPMN and Qualigram). This analytical comparison helped to define a set of modeling guidelines for the business application software domain. The comparison also allowed defining a set of mapping rules between the modeling notations’ constructs and the COSMIC concepts. In addition, the modeling guidelines were adapted for their application to the real-time software domain. The measurement procedure was evaluated by comparing its measurement results to those obtained in COSMIC reference case studies. The research results demonstrate that: 1. BPM+ allows generating business process models that represent in a consistent and structured way the needs of various stakeholders. 2. Qualigram notation is better suited to BPM+’s design. In addition, Qualigram notation is preferred to be used for non-IT stakeholders, while BPMN is preferred for IT stakeholders. 3. The measurement procedure was successfully applied using two different notations: Qualigram and BPMN, and in two different software domains: the business application domain and the real-time domain. 4. The accuracy of the measurement procedure is in conformity with all the rules of the ISO 19761 standard
    corecore