7 research outputs found

    Paradoxes of interactivity: perspectives for media theory, human-computer interaction, and artistic investigations

    Get PDF
    Current findings from anthropology, genetics, prehistory, cognitive and neuroscience indicate that human nature is grounded in a co-evolution of tool use, symbolic communication, social interaction and cultural transmission. Digital information technology has recently entered as a new tool in this co-evolution, and will probably have the strongest impact on shaping the human mind in the near future. A common effort from the humanities, the sciences, art and technology is necessary to understand this ongoing co- evolutionary process. Interactivity is a key for understanding the new relationships formed by humans with social robots as well as interactive environments and wearables underlying this process. Of special importance for understanding interactivity are human-computer and human-robot interaction, as well as media theory and New Media Art. "Paradoxes of Interactivity" brings together reflections on "interactivity" from different theoretical perspectives, the interplay of science and art, and recent technological developments for artistic applications, especially in the realm of sound

    Paradoxes of Interactivity

    Get PDF
    Current findings from anthropology, genetics, prehistory, cognitive and neuroscience indicate that human nature is grounded in a co-evolution of tool use, symbolic communication, social interaction and cultural transmission. Digital information technology has recently entered as a new tool in this co-evolution, and will probably have the strongest impact on shaping the human mind in the near future. A common effort from the humanities, the sciences, art and technology is necessary to understand this ongoing co- evolutionary process. Interactivity is a key for understanding the new relationships formed by humans with social robots as well as interactive environments and wearables underlying this process. Of special importance for understanding interactivity are human-computer and human-robot interaction, as well as media theory and New Media Art. »Paradoxes of Interactivity« brings together reflections on »interactivity« from different theoretical perspectives, the interplay of science and art, and recent technological developments for artistic applications, especially in the realm of sound

    Search-based system architecture development using a holistic modeling approach

    Get PDF
    This dissertation presents an innovative approach to system architecting where search algorithms are used to explore design trade space for good architecture alternatives. Such an approach is achieved by integrating certain model construction, alternative generation, simulation, and assessment processes into a coherent and automated framework. This framework is facilitated by a holistic modeling approach that combines the capabilities of Object Process Methodology (OPM), Colored Petri Net (CPN), and feature model. The resultant holistic model can not only capture the structural, behavioral, and dynamic aspects of a system, allowing simulation and strong analysis methods to be applied, it can also specify the architectural design space. Both object-oriented analysis and design (OOA/D) and domain engineering were exploited to capture design variables and their domains and define architecture generation operations. A fully realized framework (with genetic algorithms as the search algorithm) was developed. Both the proposed framework and its suggested implementation, including the proposed holistic modeling approach and architecture alternative generation operations, are generic. They are targeted at systems that can be specified using object-oriented or process-oriented paradigm. The broad applicability of the proposed approach is demonstrated on two examples. One is the configuration of reconfigurable manufacturing systems (RMSs) under multi-objective optimization and the other is the architecture design of a manned lunar landing system for the Apollo program. The test results show that the proposed approach can cover a huge number of architecture alternatives and support the assessment of several performance measures. A set of quality results was obtained after running the optimization algorithm following the proposed framework --Abstract, page iii

    Towards an Ontology of Software

    Get PDF
    Software is permeating every aspect of our personal and social life. And yet, the cluster of concepts around the notion of software, such as the notions of a software product, software requirements, software specifications, are still poorly understood with no consensus on the horizon. For many, software is just code, something intangible best defined in contrast with hardware, but it is not particularly illuminating. This erroneous notion, software is just code, presents both in the ontology of software literature and in the software maintenance tools. This notion is obviously wrong because it doesn’t account for the fact that whenever someone fixes a bug, the code of a software system changes, but nobody believes that this is a different software system. Several researchers have attempted to understand the core nature of software and programs in terms of concepts such as code, copy, medium and execution. More recently, a proposal was made by Irmak to consider software as an abstract artifact, distinct from code, just because code may change while the software remains the same. We share many of his intuitions, as well as the methodology he adopts to motivate his conclusions, based on an analysis of the condition under which software maintains its identity despite change. However, he leaves the question of ‘what is the identity of software’ open, and we answer this question here. Trying to answer the question left open by Irmak, the main objective of this dissertation is to lay the foundations for an ontology of software, grounded on the foundational ontology DOLCE. This new ontology of software is intended to facilitate the communication within the community by reducing terminological ambiguities, and by resolving inconsistencies. If we had a better footing on answering the question ‘What is software?’, we'd be in a position to build better tools for maintaining and managing a software system throughout its lifetime. The research contents of the thesis consist of three results. Firstly, we dive into the ontological nature of software, recognizing it as an abstract information artifact. To support this proposal the first main contribution of the dissertation is demonstrated from three dimensions: (1) We distinguish software (non-physical object) from hardware (physical object), and demonstrate the idea that the rapid changing speed of software is supported by the easy changeability of its medium hardware; (2) Furthermore, we discuss about the artifactual nature of software, addressing the erroneous notion, software is just code, presents both in the ontology of software literature and in the software maintenance tools; (3)At last, we recognize software as an information artifact, and this approach ensures that software inherits all the properties of an information artifact, and the study and research could be directly reused for software then. Secondly, we propose an ontology founded on the concepts adopted from Requirements Engineering (RE), such as the notions of World and Machine phenomena. In this ontology, we make a sharp distinction between different kinds of software artifacts (software program, software system, and software product), and describe the ways they are inter-connected in the context of a software engineering process. Additionally, we study software from a Social Perspective, explaining the concepts of licensable software product and licensed software product. Also, we discuss about the possibility to adopt our ontology of software in software configuration management systems to provide a better understanding and control of software changes. Thirdly, we note the important role played by assumptions in getting software to fulfill its requirements. The requirements for most software systems -- the intended states-of-affairs these systems are supposed to bring about -- concern their operational environment, usually a social world. But these systems don’t have any direct means to change that environment in order to bring about the intended states-of-affairs. In what sense then can we say that such systems fulfill their requirements? One of the main contributions of this dissertation is to account for this paradox. We do so by proposing a preliminary ontology of assumptions that are implicitly used in software engineering practice to establish that a system specification S fulfills its requirements R given a set of assumptions A, and our proposal is illustrated with a meeting scheduling example

    Acta Polytechnica Hungarica 2008

    Get PDF

    Conceptual modeling semantics for the physical-informatical essence duality problem

    No full text
    Physical-Informatical Essence Duality (PIED) is the parallel existence of an entity as both an independent, mostly physical object, and its informatical representation. System models tend to neglect or ignore this dual representation and the two parallel manifestations of model entities. This may result in erroneous modeling and realization, as representations can be partial and mistaken. Agent perception or capturing of an entity of interest is fundamental to the way it affects or interacts with the entity. The problem intensifies in models of complex systems and systems of systems, which must account for original embodiments and their multiple representations by various agents. This paper proposes a formal model-based approach and theory for detecting, capturing, representing, and controlling this physical-informatical duality in system models. We illustrate the proposed semantics via formal object-oriented epistemic logic semantics and via Object-Process Methodology (OPM), the emerging ISO 19450 standard for Model-based Systems Engineering. © 2013 IEEE

    Physical-Informatical Essence-Duality-Aware Generic Modeling of Threat Handling Processes

    No full text
    Systems interact with real world entities, and must hold internal representations of these entities in order to handle them appropriately. Physical-informatical essence duality (PIED) is the parallel existence of the entity as both the original, usually physical source, and its informatical representation, as held by each agent interacting with the entity. The distinction between the original external entity and its representation is critical for correct modeling and realization of complex interactions of cyber-physical systems with the real world. The implications of this distinction must be recognized and accounted for. Conceptual modeling semantics for the PIED problem make this distinction possible, structured, and well-defined in the system model. We review a formalism based on Epistemic Logic semantics, and a modelbased framework based on Object Process Methodology, and demonstrate the applicability of our framework for generic modeling of threat handling processes, common to various cyber-physical systems and various types of threats, such as safety hazards, terror attacks, and cyber-attacks
    corecore