74,702 research outputs found

    BCAS: A Web-enabled and GIS-based Decision Support System for the Diagnosis and Treatment of Breast Cancer

    Get PDF
    For decades, geographical variations in cancer rates have been observed but the precise determinants of such geographic differences in breast cancer development are unclear. Various statistical models have been proposed. Applications of these models, however, require that the data be assembled from a variety of sources, converted into the statistical models’ parameters and delivered effectively to researchers and policy makers. A web-enabled and GIS-based system can be developed to provide the needed functionality. This article overviews the conceptual web-enabled and GIS-based system (BCAS), illustrates the system’s use in diagnosing and treating breast cancer and examines the potential benefits and implications for breast cancer research and practice

    The last five years of Big Data Research in Economics, Econometrics and Finance: Identification and conceptual analysis

    Get PDF
    Today, the Big Data term has a multidimensional approach where five main characteristics stand out: volume, velocity, veracity, value and variety. It has changed from being an emerging theme to a growing research area. In this respect, this study analyses the literature on Big Data in the Economics, Econometrics and Finance field. To do that, 1.034 publications from 2015 to 2019 were evaluated using SciMAT as a bibliometric and network analysis software. SciMAT offers a complete approach of the field and evaluates the most cited and productive authors, countries and subject areas related to Big Data. Lastly, a science map is performed to understand the intellectual structure and the main research lines (themes)

    What country, university or research institute, performed the best on COVID-19? Bibliometric analysis of scientific literature

    Full text link
    In this article, we conduct data mining to discover the countries, universities and companies, produced or collaborated the most research on Covid-19 since the pandemic started. We present some interesting findings, but despite analysing all available records on COVID-19 from the Web of Science Core Collection, we failed to reach any significant conclusions on how the world responded to the COVID-19 pandemic. Therefore, we increased our analysis to include all available data records on pandemics and epidemics from 1900 to 2020. We discover some interesting results on countries, universities and companies, that produced collaborated most the most in research on pandemic and epidemics. Then we compared the results with the analysing on COVID-19 data records. This has created some interesting findings that are explained and graphically visualised in the article

    A conceptual analytics model for an outcome-driven quality management framework as part of professional healthcare education

    Get PDF
    BACKGROUND: Preparing the future health care professional workforce in a changing world is a significant undertaking. Educators and other decision makers look to evidence-based knowledge to improve quality of education. Analytics, the use of data to generate insights and support decisions, have been applied successfully across numerous application domains. Health care professional education is one area where great potential is yet to be realized. Previous research of Academic and Learning analytics has mainly focused on technical issues. The focus of this study relates to its practical implementation in the setting of health care education. OBJECTIVE: The aim of this study is to create a conceptual model for a deeper understanding of the synthesizing process, and transforming data into information to support educators’ decision making. METHODS: A deductive case study approach was applied to develop the conceptual model. RESULTS: The analytics loop works both in theory and in practice. The conceptual model encompasses the underlying data, the quality indicators, and decision support for educators. CONCLUSIONS: The model illustrates how a theory can be applied to a traditional data-driven analytics approach, and alongside the context- or need-driven analytics approach

    Freshwater ecosystem services in mining regions : modelling options for policy development support

    Get PDF
    The ecosystem services (ES) approach offers an integrated perspective of social-ecological systems, suitable for holistic assessments of mining impacts. Yet for ES models to be policy-relevant, methodological consensus in mining contexts is needed. We review articles assessing ES in mining areas focusing on freshwater components and policy support potential. Twenty-six articles were analysed concerning (i) methodological complexity (data types, number of parameters, processes and ecosystem-human integration level) and (ii) potential applicability for policy development (communication of uncertainties, scenario simulation, stakeholder participation and management recommendations). Articles illustrate mining impacts on ES through valuation exercises mostly. However, the lack of ground-and surface-water measurements, as well as insufficient representation of the connectivity among soil, water and humans, leave room for improvements. Inclusion of mining-specific environmental stressors models, increasing resolution of topographies, determination of baseline ES patterns and inclusion of multi-stakeholder perspectives are advantageous for policy support. We argue that achieving more holistic assessments exhorts practitioners to aim for high social-ecological connectivity using mechanistic models where possible and using inductive methods only where necessary. Due to data constraints, cause-effect networks might be the most feasible and best solution. Thus, a policy-oriented framework is proposed, in which data science is directed to environmental modelling for analysis of mining impacts on water ES

    Conceptual graph-based knowledge representation for supporting reasoning in African traditional medicine

    Get PDF
    Although African patients use both conventional or modern and traditional healthcare simultaneously, it has been proven that 80% of people rely on African traditional medicine (ATM). ATM includes medical activities stemming from practices, customs and traditions which were integral to the distinctive African cultures. It is based mainly on the oral transfer of knowledge, with the risk of losing critical knowledge. Moreover, practices differ according to the regions and the availability of medicinal plants. Therefore, it is necessary to compile tacit, disseminated and complex knowledge from various Tradi-Practitioners (TP) in order to determine interesting patterns for treating a given disease. Knowledge engineering methods for traditional medicine are useful to model suitably complex information needs, formalize knowledge of domain experts and highlight the effective practices for their integration to conventional medicine. The work described in this paper presents an approach which addresses two issues. First it aims at proposing a formal representation model of ATM knowledge and practices to facilitate their sharing and reusing. Then, it aims at providing a visual reasoning mechanism for selecting best available procedures and medicinal plants to treat diseases. The approach is based on the use of the Delphi method for capturing knowledge from various experts which necessitate reaching a consensus. Conceptual graph formalism is used to model ATM knowledge with visual reasoning capabilities and processes. The nested conceptual graphs are used to visually express the semantic meaning of Computational Tree Logic (CTL) constructs that are useful for formal specification of temporal properties of ATM domain knowledge. Our approach presents the advantage of mitigating knowledge loss with conceptual development assistance to improve the quality of ATM care (medical diagnosis and therapeutics), but also patient safety (drug monitoring)
    • …
    corecore