5,570 research outputs found

    Conceptual design of human-drone communication in collaborative environments

    Get PDF
    © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Autonomous robots and drones will work collaboratively and cooperatively in tomorrow’s industry and agriculture. Before this becomes a reality, some form of standardised communication between man and machine must be established that specifically facilitates communication between autonomous machines and both trained and un-trained human actors in the working environment. We present preliminary results on a human-drone and a drone-human language situated in the agricultural industry where interactions with trained and untrained workers and visitors can be expected. We present basic visual indicators enhanced with flight patterns for drone-human interaction and human signaling based on aircraft marshalling for humane-drone interaction. We discuss preliminary results on image recognition and future work

    Security, privacy and safety evaluation of dynamic and static fleets of drones

    Get PDF
    Inter-connected objects, either via public or private networks are the near future of modern societies. Such inter-connected objects are referred to as Internet-of-Things (IoT) and/or Cyber-Physical Systems (CPS). One example of such a system is based on Unmanned Aerial Vehicles (UAVs). The fleet of such vehicles are prophesied to take on multiple roles involving mundane to high-sensitive, such as, prompt pizza or shopping deliveries to your homes to battlefield deployment for reconnaissance and combat missions. Drones, as we refer to UAVs in this paper, either can operate individually (solo missions) or part of a fleet (group missions), with and without constant connection with the base station. The base station acts as the command centre to manage the activities of the drones. However, an independent, localised and effective fleet control is required, potentially based on swarm intelligence, for the reasons: 1) increase in the number of drone fleets, 2) number of drones in a fleet might be multiple of tens, 3) time-criticality in making decisions by such fleets in the wild, 4) potential communication congestions/lag, and 5) in some cases working in challenging terrains that hinders or mandates-limited communication with control centre (i.e., operations spanning long period of times or military usage of such fleets in enemy territory). This self-ware, mission-focused and independent fleet of drones that potential utilises swarm intelligence for a) air-traffic and/or flight control management, b) obstacle avoidance, c) self-preservation while maintaining the mission criteria, d) collaboration with other fleets in the wild (autonomously) and e) assuring the security, privacy and safety of physical (drones itself) and virtual (data, software) assets. In this paper, we investigate the challenges faced by fleet of drones and propose a potential course of action on how to overcome them.Comment: 12 Pages, 7 Figures, Conference, The 36th IEEE/AIAA Digital Avionics Systems Conference (DASC'17

    A Suite of Modelling Tools for Developing Cyber-Physical Systems and Digital Twins Implementations

    Get PDF
    This paper reports on the integration between IoT and business process management, in order to help organisations implement Digital Twins more easily, thus achieving new levels of agility and developing higher quality data streams. The work was mapped on the Digital Engineer framework, highlighting the contributions made towards bridging the gap between process design in digital environments and process enactment in the real world. Moreover, we are also describing some research directions that would lead to a stronger coupling between digital and physical environments, leveraging the benefits of conceptual modelling

    Design Transactions

    Get PDF
    Design Transactions presents the outcome of new research to emerge from ‘Innochain’, a consortium of six leading European architectural and engineering-focused institutions and their industry partners. The book presents new advances in digital design tooling that challenge established building cultures and systems. It offers new sustainable and materially smart design solutions with a strong focus on changing the way the industry thinks, designs, and builds our physical environment. Divided into sections exploring communication, simulation and materialisation, Design Transactions explores digital and physical prototyping and testing that challenges the traditional linear construction methods of incremental refinement. This novel research investigates ‘the digital chain’ between phases as an opportunity for extended interdisciplinary design collaboration. The highly illustrated book features work from 15 early-stage researchers alongside chapters from world-leading industry collaborators and academics

    Design Transactions: Rethinking Information for a New Material Age

    Get PDF
    Design Transactions presents the outcome of new research to emerge from ‘Innochain’, a consortium of six leading European architectural and engineering-focused institutions and their industry partners. The book presents new advances in digital design tooling that challenge established building cultures and systems. It offers new sustainable and materially smart design solutions with a strong focus on changing the way the industry thinks, designs, and builds our physical environment. Divided into sections exploring communication, simulation and materialisation, Design Transactions explores digital and physical prototyping and testing that challenges the traditional linear construction methods of incremental refinement. This novel research investigates ‘the digital chain’ between phases as an opportunity for extended interdisciplinary design collaboration. The highly illustrated book features work from 15 early-stage researchers alongside chapters from world-leading industry collaborators and academics
    • 

    corecore