411 research outputs found

    Concept-based query expansion for retrieving gene related publications from MEDLINE

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Advances in biotechnology and in high-throughput methods for gene analysis have contributed to an exponential increase in the number of scientific publications in these fields of study. While much of the data and results described in these articles are entered and annotated in the various existing biomedical databases, the scientific literature is still the major source of information. There is, therefore, a growing need for text mining and information retrieval tools to help researchers find the relevant articles for their study. To tackle this, several tools have been proposed to provide alternative solutions for specific user requests.</p> <p>Results</p> <p>This paper presents QuExT, a new PubMed-based document retrieval and prioritization tool that, from a given list of genes, searches for the most relevant results from the literature. QuExT follows a concept-oriented query expansion methodology to find documents containing concepts related to the genes in the user input, such as protein and pathway names. The retrieved documents are ranked according to user-definable weights assigned to each concept class. By changing these weights, users can modify the ranking of the results in order to focus on documents dealing with a specific concept. The method's performance was evaluated using data from the 2004 TREC genomics track, producing a mean average precision of 0.425, with an average of 4.8 and 31.3 relevant documents within the top 10 and 100 retrieved abstracts, respectively.</p> <p>Conclusions</p> <p>QuExT implements a concept-based query expansion scheme that leverages gene-related information available on a variety of biological resources. The main advantage of the system is to give the user control over the ranking of the results by means of a simple weighting scheme. Using this approach, researchers can effortlessly explore the literature regarding a group of genes and focus on the different aspects relating to these genes.</p

    PubMed and beyond: a survey of web tools for searching biomedical literature

    Get PDF
    The past decade has witnessed the modern advances of high-throughput technology and rapid growth of research capacity in producing large-scale biological data, both of which were concomitant with an exponential growth of biomedical literature. This wealth of scholarly knowledge is of significant importance for researchers in making scientific discoveries and healthcare professionals in managing health-related matters. However, the acquisition of such information is becoming increasingly difficult due to its large volume and rapid growth. In response, the National Center for Biotechnology Information (NCBI) is continuously making changes to its PubMed Web service for improvement. Meanwhile, different entities have devoted themselves to developing Web tools for helping users quickly and efficiently search and retrieve relevant publications. These practices, together with maturity in the field of text mining, have led to an increase in the number and quality of various Web tools that provide comparable literature search service to PubMed. In this study, we review 28 such tools, highlight their respective innovations, compare them to the PubMed system and one another, and discuss directions for future development. Furthermore, we have built a website dedicated to tracking existing systems and future advances in the field of biomedical literature search. Taken together, our work serves information seekers in choosing tools for their needs and service providers and developers in keeping current in the field

    Hybrid Query Expansion on Ontology Graph in Biomedical Information Retrieval

    Get PDF
    Nowadays, biomedical researchers publish thousands of papers and journals every day. Searching through biomedical literature to keep up with the state of the art is a task of increasing difficulty for many individual researchers. The continuously increasing amount of biomedical text data has resulted in high demands for an efficient and effective biomedical information retrieval (BIR) system. Though many existing information retrieval techniques can be directly applied in BIR, BIR distinguishes itself in the extensive use of biomedical terms and abbreviations which present high ambiguity. First of all, we studied a fundamental yet simpler problem of word semantic similarity. We proposed a novel semantic word similarity algorithm and related tools called Weighted Edge Similarity Tools (WEST). WEST was motivated by our discovery that humans are more sensitive to the semantic difference due to the categorization than that due to the generalization/specification. Unlike most existing methods which model the semantic similarity of words based on either the depth of their Lowest Common Ancestor (LCA) or the traversal distance of between the word pair in WordNet, WEST also considers the joint contribution of the weighted distance between two words and the weighted depth of their LCA in WordNet. Experiments show that weighted edge based word similarity method has achieved 83.5% accuracy to human judgments. Query expansion problem can be viewed as selecting top k words which have the maximum accumulated similarity to a given word set. It has been proved as an effective method in BIR and has been studied for over two decades. However, most of the previous researches focus on only one controlled vocabulary: MeSH. In addition, early studies find that applying ontology won\u27t necessarily improve searching performance. In this dissertation, we propose a novel graph based query expansion approach which is able to take advantage of the global information from multiple controlled vocabularies via building a biomedical ontology graph from selected vocabularies in Metathesaurus. We apply Personalized PageRank algorithm on the ontology graph to rank and identify top terms which are highly relevant to the original user query, yet not presented in that query. Those new terms are reordered by a weighted scheme to prioritize specialized concepts. We multiply a scaling factor to those final selected terms to prevent query drifting and append them to the original query in the search. Experiments show that our approach achieves 17.7% improvement in 11 points average precision and recall value against Lucene\u27s default indexing and searching strategy and by 24.8% better against all the other strategies on average. Furthermore, we observe that expanding with specialized concepts rather than generalized concepts can substantially improve the recall-precision performance. Furthermore, we have successfully applied WEST from the underlying WordNet graph to biomedical ontology graph constructed by multiple controlled vocabularies in Metathesaurus. Experiments indicate that WEST further improve the recall-precision performance. Finally, we have developed a Graph-based Biomedical Search Engine (G-Bean) for retrieving and visualizing information from literature using our proposed query expansion algorithm. G-Bean accepts any medical related user query and processes them with expanded medical query to search for the MEDLINE database

    Literature Mapping with PubAtlas — extending PubMed with a ‘BLASTing interface’ *

    Get PDF
    PubAtlas (www.pubatlas.org) is a web service and standalone program providing literature maps for the biomedical research literature. It accepts user-defined sets of terms (PubMed queries) as input, and permits ‘BLASTing’ of one set against another: for all terms x and y in these sets, deriving the results of the pairwise intersections x AND y. This all vs. all capability extends PubMed with a literature analysis interface. Correspondingly, the basic form of literature map that PubAtlas provides for exploring associations among sets of terms is an interactive tabular display, in heatmap/microarray format

    A Relevance Feedback-Based System For Quickly Narrowing Biomedical Literature Search Result

    Get PDF
    The online literature is an important source that helps people find the information. The quick increase of online literature makes the manual search process for the most relevant information a very time-consuming task and leads to sifting through many results to find the relevant ones. The existing search engines and online databases return a list of results that satisfy the user\u27s search criteria. The list is often too long for the user to go through every hit if he/she does not exactly know what he/she wants or/and does not have time to review them one by one. My focus is on how to find biomedical literature in a fastest way. In this dissertation, I developed a biomedical literature search system that uses relevance feedback mechanism, fuzzy logic, text mining techniques and Unified Medical Language System. The system extracts and decodes information from the online biomedical documents and uses the extracted information to first filter unwanted documents and then ranks the related ones based on the user preferences. I used text mining techniques to extract PDF document features and used these features to filter unwanted documents with the help of fuzzy logic. The system extracts meaning and semantic relations between texts and calculates the similarity between documents using these relations. Moreover, I developed a fuzzy literature ranking method that uses fuzzy logic, text mining techniques and Unified Medical Language System. The ranking process is utilized based on fuzzy logic and Unified Medical Language System knowledge resources. The fuzzy ranking method uses semantic type and meaning concepts to map the relations between texts in documents. The relevance feedback-based biomedical literature search system is evaluated using a real biomedical data that created using dobutamine (drug name). The data set contains 1,099 original documents. To obtain coherent and reliable evaluation results, two physicians are involved in the system evaluation. Using (30-day mortality) as specific query, the retrieved result precision improves by 87.7% in three rounds, which shows the effectiveness of using relevance feedback, fuzzy logic and UMLS in the search process. Moreover, the fuzzy-based ranking method is evaluated in term of ranking the biomedical search result. Experiments show that the fuzzy-based ranking method improves the average ranking order accuracy by 3.35% and 29.55% as compared with UMLS meaning and semantic type methods respectively

    Using tag-neighbors for query expansion in medical information retrieval

    Full text link
    In the context of medical document retrieval, users often under-specified queries lead to undesired search results that suffer from not containing the information they seek, inadequate domain knowledge matches and unreliable sources. To overcome the limitations of under-specified queries, we utilize tags to enhance information retrieval capabilities by expanding users' original queries with context-relevant information. We compute a set of significant tag neighbor candidates based on the neighbor frequency and weight, and utilize the most frequent and weighted neighbors to expand an entry query that has terms matching tags. The proposed approach is evaluated using MedWorm medical article collection and standard evaluation methods from the text retrieval conference (TREC). We compared the baseline of 0.353 for Mean Average Precision (MAP), reaching a MAP 0.491 (+39%) with the query expansion. In-depth analysis shows how this strategy is beneficial when compared with different ranks of the retrieval results. © 2011 IEEE

    Unapparent information revelation for counterterrorism: Visualizing associations using a hybrid graph-based approach

    Get PDF
    Unapparent Information Revelation refers to the task in the text mining of a document collection of revealing interesting information other than that which is explicitly stated. It focuses on detecting possible links between concepts across multiple text documents by generating a graph that matches the evidence trail found in the documents. A Concept Chain Graph is a statistical technique to find links in snippets of information where singularly each small piece appears to be unconnected.In relation to algorithm performance, Latent Semantic Indexing and the Contextual Network Graph are found to be comparable to the Concept Chain Graph.These aspects are explored and discussed.In this paper,a review is performed on these three similarly grounded approaches. The Concept Chain Graph is proposed as being suited to extracting interesting relations among concepts that co-occur within text collections due to its prominent ability to construct a directed graph, representing the evidence trail. It is the baseline study for our hybrid Concept Chain Graph approac
    • …
    corecore