21,645 research outputs found

    NASA space station automation: AI-based technology review. Executive summary

    Get PDF
    Research and Development projects in automation technology for the Space Station are described. Artificial Intelligence (AI) based technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics

    Discrete event simulation and virtual reality use in industry: new opportunities and future trends

    Get PDF
    This paper reviews the area of combined discrete event simulation (DES) and virtual reality (VR) use within industry. While establishing a state of the art for progress in this area, this paper makes the case for VR DES as the vehicle of choice for complex data analysis through interactive simulation models, highlighting both its advantages and current limitations. This paper reviews active research topics such as VR and DES real-time integration, communication protocols, system design considerations, model validation, and applications of VR and DES. While summarizing future research directions for this technology combination, the case is made for smart factory adoption of VR DES as a new platform for scenario testing and decision making. It is put that in order for VR DES to fully meet the visualization requirements of both Industry 4.0 and Industrial Internet visions of digital manufacturing, further research is required in the areas of lower latency image processing, DES delivery as a service, gesture recognition for VR DES interaction, and linkage of DES to real-time data streams and Big Data sets

    Towards homeostatic architecture: simulation of the generative process of a termite mound construction

    Get PDF
    This report sets out to the theme of the generation of a ‘living’, homeostatic and self-organizing architectural structure. The main research question this project addresses is what innovative techniques of design, construction and materials could prospectively be developed and eventually applied to create and sustain human-made buildings which are mostly adaptive, self-controlled and self-functioning, without option to a vast supply of materials and peripheral services. The hypothesis is that through the implementation of the biological building behaviour of termites, in terms of collective construction mechanisms that are based on environmental stimuli, we could achieve a simulation of the generative process of their adaptive structures, capable to inform in many ways human construction. The essay explicates the development of the 3-dimensional, agent-based simulation of the termite collective construction and analyzes the results, which involve besides physical modelling of the evolved structures. It finally elucidates the potential of this emerging and adaptive architectural performance to be translated to human practice and thus enlighten new ecological engineering and design methodologies

    Model-Based Systems Engineering Approach to Distributed and Hybrid Simulation Systems

    Get PDF
    INCOSE defines Model-Based Systems Engineering (MBSE) as the formalized application of modeling to support system requirements, design, analysis, verification, and validation activities beginning in the conceptual design phase and continuing throughout development and later life cycle phases. One very important development is the utilization of MBSE to develop distributed and hybrid (discrete-continuous) simulation modeling systems. MBSE can help to describe the systems to be modeled and help make the right decisions and partitions to tame complexity. The ability to embrace conceptual modeling and interoperability techniques during systems specification and design presents a great advantage in distributed and hybrid simulation systems development efforts. Our research is aimed at the definition of a methodological framework that uses MBSE languages, methods and tools for the development of these simulation systems. A model-based composition approach is defined at the initial steps to identify distributed systems interoperability requirements and hybrid simulation systems characteristics. Guidelines are developed to adopt simulation interoperability standards and conceptual modeling techniques using MBSE methods and tools. Domain specific system complexity and behavior can be captured with model-based approaches during the system architecture and functional design requirements definition. MBSE can allow simulation engineers to formally model different aspects of a problem ranging from architectures to corresponding behavioral analysis, to functional decompositions and user requirements (Jobe, 2008)
    • …
    corecore