2,616 research outputs found

    Adoption of vehicular ad hoc networking protocols by networked robots

    Get PDF
    This paper focuses on the utilization of wireless networking in the robotics domain. Many researchers have already equipped their robots with wireless communication capabilities, stimulated by the observation that multi-robot systems tend to have several advantages over their single-robot counterparts. Typically, this integration of wireless communication is tackled in a quite pragmatic manner, only a few authors presented novel Robotic Ad Hoc Network (RANET) protocols that were designed specifically with robotic use cases in mind. This is in sharp contrast with the domain of vehicular ad hoc networks (VANET). This observation is the starting point of this paper. If the results of previous efforts focusing on VANET protocols could be reused in the RANET domain, this could lead to rapid progress in the field of networked robots. To investigate this possibility, this paper provides a thorough overview of the related work in the domain of robotic and vehicular ad hoc networks. Based on this information, an exhaustive list of requirements is defined for both types. It is concluded that the most significant difference lies in the fact that VANET protocols are oriented towards low throughput messaging, while RANET protocols have to support high throughput media streaming as well. Although not always with equal importance, all other defined requirements are valid for both protocols. This leads to the conclusion that cross-fertilization between them is an appealing approach for future RANET research. To support such developments, this paper concludes with the definition of an appropriate working plan

    Development of a Concept of Operations for a Counter-Swarm Scenario

    Get PDF

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Using a Semi-autonomous Drone Swarm to Support Wildfire Management – A Concept of Operations Development Study

    Get PDF
    This paper provides insights into a human factors-oriented Concept of Operations (ConOps), which can be applied for future semi-autonomous drone swarms to support the management of wildfires. The results provide, firstly, an overview of the current practices to manage wildfires in Finland. Secondly, some of the current challenges and future visions about drone usage in a wildfire situation are presented. Third, a description of the key elements of the developed future ConOps for operating a drone swarm to support the combat of wildfires is given. The ConOps has been formulated based on qualitative research, which included a literature review, seven subject matter expert interviews and a workshop with 40 professionals in the domain. Many elements of this ConOps may also be applied to a variety of other swarm robotics operations than only wildfire management. Finally, as the development of the ConOps is still in its first stage, several further avenues for research and development are proposed

    An Evaluation Schema for the Ethical Use of Autonomous Robotic Systems in Security Applications

    Get PDF
    We propose a multi-step evaluation schema designed to help procurement agencies and others to examine the ethical dimensions of autonomous systems to be applied in the security sector, including autonomous weapons systems

    An overview of robotics and autonomous systems for harsh environments

    Get PDF
    Across a wide range of industries and applications, robotics and autonomous systems can fulfil the crucial and challenging tasks such as inspection, exploration, monitoring, drilling, sampling and mapping in areas of scientific discovery, disaster prevention, human rescue and infrastructure management, etc. However, in many situations, the associated environment is either too dangerous or inaccessible to humans. Hence, a wide range of robots have been developed and deployed to replace or aid humans in these activities. A look at these harsh environment applications of robotics demonstrate the diversity of technologies developed. This paper reviews some key application areas of robotics that involve interactions with harsh environments (such as search and rescue, space exploration, and deep-sea operations), gives an overview of the developed technologies and provides a discussion of the key trends and future directions common to many of these areas
    • …
    corecore