2,409 research outputs found

    Model predictive control for microgrid functionalities: review and future challenges

    Get PDF
    ABSTRACT: Renewable generation and energy storage systems are technologies which evoke the future energy paradigm. While these technologies have reached their technological maturity, the way they are integrated and operated in the future smart grids still presents several challenges. Microgrids appear as a key technology to pave the path towards the integration and optimized operation in smart grids. However, the optimization of microgrids considered as a set of subsystems introduces a high degree of complexity in the associated control problem. Model Predictive Control (MPC) is a control methodology which has been satisfactorily applied to solve complex control problems in the industry and also currently it is widely researched and adopted in the research community. This paper reviews the application of MPC to microgrids from the point of view of their main functionalities, describing the design methodology and the main current advances. Finally, challenges and future perspectives of MPC and its applications in microgrids are described and summarized.info:eu-repo/semantics/publishedVersio

    Stochastic Event-Based Control and Estimation

    Get PDF
    Digital controllers are traditionally implemented using periodic sampling, computation, and actuation events. As more control systems are implemented to share limited network and CPU bandwidth with other tasks, it is becoming increasingly attractive to use some form of event-based control instead, where precious events are used only when needed. Forms of event-based control have been used in practice for a very long time, but mostly in an ad-hoc way. Though optimal solutions to most event-based control problems are unknown, it should still be viable to compare performance between suggested approaches in a reasonable manner. This thesis investigates an event-based variation on the stochastic linear-quadratic (LQ) control problem, with a fixed cost per control event. The sporadic constraint of an enforced minimum inter-event time is introduced, yielding a mixed continuous-/discrete-time formulation. The quantitative trade-off between event rate and control performance is compared between periodic and sporadic control. Example problems for first-order plants are investigated, for a single control loop and for multiple loops closed over a shared medium. Path constraints are introduced to model and analyze higher-order event-based control systems. This component-based approach to stochastic hybrid systems allows to express continuous- and discrete-time dynamics, state and switching constraints, control laws, and stochastic disturbances in the same model. Sum-of-squares techniques are then used to find bounds on control objectives using convex semidefinite programming. The thesis also considers state estimation for discrete time linear stochastic systems from measurements with convex set uncertainty. The Bayesian observer is considered given log-concave process disturbances and measurement likelihoods. Strong log-concavity is introduced, and it is shown that the observer preserves log-concavity, and propagates strong log-concavity like inverse covariance in a Kalman filter. A recursive state estimator is developed for systems with both stochastic and set-bounded process and measurement noise terms. A time-varying linear filter gain is optimized using convex semidefinite programming and ellipsoidal over-approximation, given a relative weight on the two kinds of error

    Bidding Strategy for Networked Microgrids in the Day-Ahead Electricity Market

    Get PDF
    In recent years, microgrids have drawn increasing attention from both academic and industrial sectors due to their enormous potential benefits to the power systems. Microgrids are essentially highly-customized small-scale power systems. Microgrids’ islanding capability enables microgrids to conduct more flexible and energy-efficient operations. Microgrids have proved to be able to provide reliable and environmental-friendly electricity to quality-sensitive or off-grid consumers. In addition, during the grid-connected operation mode, microgrids can also provide support to the utility grid. World-widely continuous microgrid deployments indicate a paradigm shift from traditional centralized large-scale systems toward more distributed and customized small-scale systems. However, microgrids can cause as many problems as it solves. More efforts are needed to address these problems caused by microgrids integration. Considering there will be multiple microgrids in future power systems, the coordination problems between individual microgrids remain to be solved. Aiming at facilitating the promotion of microgrids, this thesis investigates the system-level modeling methods for coordination between multiple microgrids in the context of participating in the market. Firstly, this thesis reviews the background and recent development of microgrid coordination models. Problems of existing studies are identified. Motivated by these problems, the research objectives and structure of this thesis are presented. Secondly, this thesis examines and compares the most common frameworks for optimization under uncertainty. An improved unit commitment model considering uncertain sub-hour wind power ramp behaviors is presented to illustrate the reformulation and solution method of optimization models with uncertainty. Next, the price-maker bidding strategy for collaborative networked microgrids is presented. Multiple microgrids are coordinated as a single dispatchable entity and participate in the market as a price-maker. The market-clearing process is modeled using system residual supply/demand price-quota curves. Multiple uncertainty sources in the bidding model are mitigated with a hybrid stochastic-robust optimization framework. What’s more, this thesis further considers the privacy concerns of individual microgrids in the coordination process. Therefore a privacy-preserving solution method based on Dantzig-Wolfe decomposition is proposed to solve the bidding problem. Both computational and economic performances of the proposed model are compared with the performances of conventional centralized coordination framework. Lastly, this thesis provides suggestions on future research directions of coordination problems among multiple microgrids
    • …
    corecore