89,769 research outputs found

    An Innovative Workspace for The Cherenkov Telescope Array

    Get PDF
    The Cherenkov Telescope Array (CTA) is an initiative to build the next generation, ground-based gamma-ray observatories. We present a prototype workspace developed at INAF that aims at providing innovative solutions for the CTA community. The workspace leverages open source technologies providing web access to a set of tools widely used by the CTA community. Two different user interaction models, connected to an authentication and authorization infrastructure, have been implemented in this workspace. The first one is a workflow management system accessed via a science gateway (based on the Liferay platform) and the second one is an interactive virtual desktop environment. The integrated workflow system allows to run applications used in astronomy and physics researches into distributed computing infrastructures (ranging from clusters to grids and clouds). The interactive desktop environment allows to use many software packages without any installation on local desktops exploiting their native graphical user interfaces. The science gateway and the interactive desktop environment are connected to the authentication and authorization infrastructure composed by a Shibboleth identity provider and a Grouper authorization solution. The Grouper released attributes are consumed by the science gateway to authorize the access to specific web resources and the role management mechanism in Liferay provides the attribute-role mapping

    Publications of the JPL Solar Thermal Power Systems Project 1976 Through 1985

    Get PDF
    Bibliographical listings are documentation products associated with the Solar Thermal Power Systems Project carried out by the Jet Propulsion Laboratory from 1976 to 1986. Documents are categorized as conference and journal papers, JPL external reports, JPL internal reports, or contractor reports (i.e., deliverable documents produced under contract to JPL). Alphabetical listings by titles are used in the bibliography itself to facilitate location of the document by subject. Two indexes are included for ease of reference; an author index; and a topical index

    Modular Self-Reconfigurable Robot Systems

    Get PDF
    The field of modular self-reconfigurable robotic systems addresses the design, fabrication, motion planning, and control of autonomous kinematic machines with variable morphology. Modular self-reconfigurable systems have the promise of making significant technological advances to the field of robotics in general. Their promise of high versatility, high value, and high robustness may lead to a radical change in automation. Currently, a number of researchers have been addressing many of the challenges. While some progress has been made, it is clear that many challenges still exist. By illustrating several of the outstanding issues as grand challenges that have been collaboratively written by a large number of researchers in this field, this article has shown several of the key directions for the future of this growing fiel

    Active learning based laboratory towards engineering education 4.0

    Get PDF
    Universities have a relevant and essential key role to ensure knowledge and development of competencies in the current fourth industrial revolution called Industry 4.0. The Industry 4.0 promotes a set of digital technologies to allow the convergence between the information technology and the operation technology towards smarter factories. Under such new framework, multiple initiatives are being carried out worldwide as response of such evolution, particularly, from the engineering education point of view. In this regard, this paper introduces the initiative that is being carried out at the Technical University of Catalonia, Spain, called Industry 4.0 Technologies Laboratory, I4Tech Lab. The I4Tech laboratory represents a technological environment for the academic, research and industrial promotion of related technologies. First, in this work, some of the main aspects considered in the definition of the so called engineering education 4.0 are discussed. Next, the proposed laboratory architecture, objectives as well as considered technologies are explained. Finally, the basis of the proposed academic method supported by an active learning approach is presented.Postprint (published version
    corecore