18,086 research outputs found

    Online Tool Condition Monitoring Based on Parsimonious Ensemble+

    Full text link
    Accurate diagnosis of tool wear in metal turning process remains an open challenge for both scientists and industrial practitioners because of inhomogeneities in workpiece material, nonstationary machining settings to suit production requirements, and nonlinear relations between measured variables and tool wear. Common methodologies for tool condition monitoring still rely on batch approaches which cannot cope with a fast sampling rate of metal cutting process. Furthermore they require a retraining process to be completed from scratch when dealing with a new set of machining parameters. This paper presents an online tool condition monitoring approach based on Parsimonious Ensemble+, pENsemble+. The unique feature of pENsemble+ lies in its highly flexible principle where both ensemble structure and base-classifier structure can automatically grow and shrink on the fly based on the characteristics of data streams. Moreover, the online feature selection scenario is integrated to actively sample relevant input attributes. The paper presents advancement of a newly developed ensemble learning algorithm, pENsemble+, where online active learning scenario is incorporated to reduce operator labelling effort. The ensemble merging scenario is proposed which allows reduction of ensemble complexity while retaining its diversity. Experimental studies utilising real-world manufacturing data streams and comparisons with well known algorithms were carried out. Furthermore, the efficacy of pENsemble was examined using benchmark concept drift data streams. It has been found that pENsemble+ incurs low structural complexity and results in a significant reduction of operator labelling effort.Comment: this paper has been published by IEEE Transactions on Cybernetic

    Evolving Ensemble Fuzzy Classifier

    Full text link
    The concept of ensemble learning offers a promising avenue in learning from data streams under complex environments because it addresses the bias and variance dilemma better than its single model counterpart and features a reconfigurable structure, which is well suited to the given context. While various extensions of ensemble learning for mining non-stationary data streams can be found in the literature, most of them are crafted under a static base classifier and revisits preceding samples in the sliding window for a retraining step. This feature causes computationally prohibitive complexity and is not flexible enough to cope with rapidly changing environments. Their complexities are often demanding because it involves a large collection of offline classifiers due to the absence of structural complexities reduction mechanisms and lack of an online feature selection mechanism. A novel evolving ensemble classifier, namely Parsimonious Ensemble pENsemble, is proposed in this paper. pENsemble differs from existing architectures in the fact that it is built upon an evolving classifier from data streams, termed Parsimonious Classifier pClass. pENsemble is equipped by an ensemble pruning mechanism, which estimates a localized generalization error of a base classifier. A dynamic online feature selection scenario is integrated into the pENsemble. This method allows for dynamic selection and deselection of input features on the fly. pENsemble adopts a dynamic ensemble structure to output a final classification decision where it features a novel drift detection scenario to grow the ensemble structure. The efficacy of the pENsemble has been numerically demonstrated through rigorous numerical studies with dynamic and evolving data streams where it delivers the most encouraging performance in attaining a tradeoff between accuracy and complexity.Comment: this paper has been published by IEEE Transactions on Fuzzy System

    Finding and tracking multi-density clusters in an online dynamic data stream

    Get PDF
    The file attached to this record is the author's final peer reviewed version.Change is one of the biggest challenges in dynamic stream mining. From a data-mining perspective, adapting and tracking change is desirable in order to understand how and why change has occurred. Clustering, a form of unsupervised learning, can be used to identify the underlying patterns in a stream. Density-based clustering identifies clusters as areas of high density separated by areas of low density. This paper proposes a Multi-Density Stream Clustering (MDSC) algorithm to address these two problems; the multi-density problem and the problem of discovering and tracking changes in a dynamic stream. MDSC consists of two on-line components; discovered, labelled clusters and an outlier buffer. Incoming points are assigned to a live cluster or passed to the outlier buffer. New clusters are discovered in the buffer using an ant-inspired swarm intelligence approach. The newly discovered cluster is uniquely labelled and added to the set of live clusters. Processed data is subject to an ageing function and will disappear when it is no longer relevant. MDSC is shown to perform favourably to state-of-the-art peer stream-clustering algorithms on a range of real and synthetic data-streams. Experimental results suggest that MDSC can discover qualitatively useful patterns while being scalable and robust to noise
    • …
    corecore