5,005 research outputs found

    Degree-degree correlations in random graphs with heavy-tailed degrees

    Get PDF
    Mixing patterns in large self-organizing networks, such as the Internet, the World Wide Web, social and biological networks are often characterized by degree-degree {dependencies} between neighbouring nodes. One of the problems with the commonly used Pearson's correlation coefficient (termed as the assortativity coefficient) is that {in disassortative networks its magnitude decreases} with the network size. This makes it impossible to compare mixing patterns, for example, in two web crawls of different size. We start with a simple model of two heavy-tailed highly correlated random variable XX and YY, and show that the sample correlation coefficient converges in distribution either to a proper random variable on [1,1][-1,1], or to zero, and if X,Y0X,Y\ge 0 then the limit is non-negative. We next show that it is non-negative in the large graph limit when the degree distribution has an infinite third moment. We consider the alternative degree-degree dependency measure, based on the Spearman's rho, and prove that it converges to an appropriate limit under very general conditions. We verify that these conditions hold in common network models, such as configuration model and Preferential Attachment model. We conclude that rank correlations provide a suitable and informative method for uncovering network mixing patterns

    Weighted distances in scale-free configuration models

    Get PDF
    In this paper we study first-passage percolation in the configuration model with empirical degree distribution that follows a power-law with exponent τ(2,3)\tau \in (2,3). We assign independent and identically distributed (i.i.d.)\ weights to the edges of the graph. We investigate the weighted distance (the length of the shortest weighted path) between two uniformly chosen vertices, called typical distances. When the underlying age-dependent branching process approximating the local neighborhoods of vertices is found to produce infinitely many individuals in finite time -- called explosive branching process -- Baroni, Hofstad and the second author showed that typical distances converge in distribution to a bounded random variable. The order of magnitude of typical distances remained open for the τ(2,3)\tau\in (2,3) case when the underlying branching process is not explosive. We close this gap by determining the first order of magnitude of typical distances in this regime for arbitrary, not necessary continuous edge-weight distributions that produce a non-explosive age-dependent branching process with infinite mean power-law offspring distributions. This sequence tends to infinity with the amount of vertices, and, by choosing an appropriate weight distribution, can be tuned to be any growing function that is O(loglogn)O(\log\log n), where nn is the number of vertices in the graph. We show that the result remains valid for the the erased configuration model as well, where we delete loops and any second and further edges between two vertices.Comment: 24 page

    Diameters in preferential attachment models

    Get PDF
    In this paper, we investigate the diameter in preferential attachment (PA-) models, thus quantifying the statement that these models are small worlds. The models studied here are such that edges are attached to older vertices proportional to the degree plus a constant, i.e., we consider affine PA-models. There is a substantial amount of literature proving that, quite generally, PA-graphs possess power-law degree sequences with a power-law exponent \tau>2. We prove that the diameter of the PA-model is bounded above by a constant times \log{t}, where t is the size of the graph. When the power-law exponent \tau exceeds 3, then we prove that \log{t} is the right order, by proving a lower bound of this order, both for the diameter as well as for the typical distance. This shows that, for \tau>3, distances are of the order \log{t}. For \tau\in (2,3), we improve the upper bound to a constant times \log\log{t}, and prove a lower bound of the same order for the diameter. Unfortunately, this proof does not extend to typical distances. These results do show that the diameter is of order \log\log{t}. These bounds partially prove predictions by physicists that the typical distance in PA-graphs are similar to the ones in other scale-free random graphs, such as the configuration model and various inhomogeneous random graph models, where typical distances have been shown to be of order \log\log{t} when \tau\in (2,3), and of order \log{t} when \tau>3

    Degrees and distances in random and evolving Apollonian networks

    Get PDF
    This paper studies Random and Evolving Apollonian networks (RANs and EANs), in d dimension for any d>=2, i.e. dynamically evolving random d dimensional simplices looked as graphs inside an initial d-dimensional simplex. We determine the limiting degree distribution in RANs and show that it follows a power law tail with exponent tau=(2d-1)/(d-1). We further show that the degree distribution in EANs converges to the same degree distribution if the simplex-occupation parameter in the n-th step of the dynamics is q_n->0 and sum_{n=0}^infty q_n =infty. This result gives a rigorous proof for the conjecture of Zhang et al. that EANs tend to show similar behavior as RANs once the occupation parameter q->0. We also determine the asymptotic behavior of shortest paths in RANs and EANs for arbitrary d dimensions. For RANs we show that the shortest path between two uniformly chosen vertices (typical distance), the flooding time of a uniformly picked vertex and the diameter of the graph after n steps all scale as constant times log n. We determine the constants for all three cases and prove a central limit theorem for the typical distances. We prove a similar CLT for typical distances in EANs

    Provable and practical approximations for the degree distribution using sublinear graph samples

    Full text link
    The degree distribution is one of the most fundamental properties used in the analysis of massive graphs. There is a large literature on graph sampling, where the goal is to estimate properties (especially the degree distribution) of a large graph through a small, random sample. The degree distribution estimation poses a significant challenge, due to its heavy-tailed nature and the large variance in degrees. We design a new algorithm, SADDLES, for this problem, using recent mathematical techniques from the field of sublinear algorithms. The SADDLES algorithm gives provably accurate outputs for all values of the degree distribution. For the analysis, we define two fatness measures of the degree distribution, called the hh-index and the zz-index. We prove that SADDLES is sublinear in the graph size when these indices are large. A corollary of this result is a provably sublinear algorithm for any degree distribution bounded below by a power law. We deploy our new algorithm on a variety of real datasets and demonstrate its excellent empirical behavior. In all instances, we get extremely accurate approximations for all values in the degree distribution by observing at most 1%1\% of the vertices. This is a major improvement over the state-of-the-art sampling algorithms, which typically sample more than 10%10\% of the vertices to give comparable results. We also observe that the hh and zz-indices of real graphs are large, validating our theoretical analysis.Comment: Longer version of the WWW 2018 submissio
    corecore