7,735 research outputs found

    Sparse random graphs: regularization and concentration of the Laplacian

    Full text link
    We study random graphs with possibly different edge probabilities in the challenging sparse regime of bounded expected degrees. Unlike in the dense case, neither the graph adjacency matrix nor its Laplacian concentrate around their expectations due to the highly irregular distribution of node degrees. It has been empirically observed that simply adding a constant of order 1/n1/n to each entry of the adjacency matrix substantially improves the behavior of Laplacian. Here we prove that this regularization indeed forces Laplacian to concentrate even in sparse graphs. As an immediate consequence in network analysis, we establish the validity of one of the simplest and fastest approaches to community detection -- regularized spectral clustering, under the stochastic block model. Our proof of concentration of regularized Laplacian is based on Grothendieck's inequality and factorization, combined with paving arguments.Comment: Added reference

    Concentration of random graphs and application to community detection

    Full text link
    Random matrix theory has played an important role in recent work on statistical network analysis. In this paper, we review recent results on regimes of concentration of random graphs around their expectation, showing that dense graphs concentrate and sparse graphs concentrate after regularization. We also review relevant network models that may be of interest to probabilists considering directions for new random matrix theory developments, and random matrix theory tools that may be of interest to statisticians looking to prove properties of network algorithms. Applications of concentration results to the problem of community detection in networks are discussed in detail.Comment: Submission for International Congress of Mathematicians, Rio de Janeiro, Brazil 201

    Stability Approach to Regularization Selection (StARS) for High Dimensional Graphical Models

    Get PDF
    A challenging problem in estimating high-dimensional graphical models is to choose the regularization parameter in a data-dependent way. The standard techniques include KK-fold cross-validation (KK-CV), Akaike information criterion (AIC), and Bayesian information criterion (BIC). Though these methods work well for low-dimensional problems, they are not suitable in high dimensional settings. In this paper, we present StARS: a new stability-based method for choosing the regularization parameter in high dimensional inference for undirected graphs. The method has a clear interpretation: we use the least amount of regularization that simultaneously makes a graph sparse and replicable under random sampling. This interpretation requires essentially no conditions. Under mild conditions, we show that StARS is partially sparsistent in terms of graph estimation: i.e. with high probability, all the true edges will be included in the selected model even when the graph size diverges with the sample size. Empirically, the performance of StARS is compared with the state-of-the-art model selection procedures, including KK-CV, AIC, and BIC, on both synthetic data and a real microarray dataset. StARS outperforms all these competing procedures
    • …
    corecore