1,304 research outputs found

    Some nonasymptotic results on resampling in high dimension, I: Confidence regions, II: Multiple tests

    Get PDF
    We study generalized bootstrap confidence regions for the mean of a random vector whose coordinates have an unknown dependency structure. The random vector is supposed to be either Gaussian or to have a symmetric and bounded distribution. The dimensionality of the vector can possibly be much larger than the number of observations and we focus on a nonasymptotic control of the confidence level, following ideas inspired by recent results in learning theory. We consider two approaches, the first based on a concentration principle (valid for a large class of resampling weights) and the second on a resampled quantile, specifically using Rademacher weights. Several intermediate results established in the approach based on concentration principles are of interest in their own right. We also discuss the question of accuracy when using Monte Carlo approximations of the resampled quantities.Comment: Published in at http://dx.doi.org/10.1214/08-AOS667; http://dx.doi.org/10.1214/08-AOS668 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Nonasymptotic bounds on the estimation error of MCMC algorithms

    Full text link
    We address the problem of upper bounding the mean square error of MCMC estimators. Our analysis is nonasymptotic. We first establish a general result valid for essentially all ergodic Markov chains encountered in Bayesian computation and a possibly unbounded target function ff. The bound is sharp in the sense that the leading term is exactly σas2(P,f)/n\sigma_{\mathrm {as}}^2(P,f)/n, where σas2(P,f)\sigma_{\mathrm{as}}^2(P,f) is the CLT asymptotic variance. Next, we proceed to specific additional assumptions and give explicit computable bounds for geometrically and polynomially ergodic Markov chains under quantitative drift conditions. As a corollary, we provide results on confidence estimation.Comment: Published in at http://dx.doi.org/10.3150/12-BEJ442 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm). arXiv admin note: text overlap with arXiv:0907.491

    Tail bounds for all eigenvalues of a sum of random matrices

    Get PDF
    This work introduces the minimax Laplace transform method, a modification of the cumulant-based matrix Laplace transform method developed in "User-friendly tail bounds for sums of random matrices" (arXiv:1004.4389v6) that yields both upper and lower bounds on each eigenvalue of a sum of random self-adjoint matrices. This machinery is used to derive eigenvalue analogues of the classical Chernoff, Bennett, and Bernstein bounds. Two examples demonstrate the efficacy of the minimax Laplace transform. The first concerns the effects of column sparsification on the spectrum of a matrix with orthonormal rows. Here, the behavior of the singular values can be described in terms of coherence-like quantities. The second example addresses the question of relative accuracy in the estimation of eigenvalues of the covariance matrix of a random process. Standard results on the convergence of sample covariance matrices provide bounds on the number of samples needed to obtain relative accuracy in the spectral norm, but these results only guarantee relative accuracy in the estimate of the maximum eigenvalue. The minimax Laplace transform argument establishes that if the lowest eigenvalues decay sufficiently fast, on the order of (K^2*r*log(p))/eps^2 samples, where K is the condition number of an optimal rank-r approximation to C, are sufficient to ensure that the dominant r eigenvalues of the covariance matrix of a N(0, C) random vector are estimated to within a factor of 1+-eps with high probability.Comment: 20 pages, 1 figure, see also arXiv:1004.4389v

    Optimal Concentration of Information Content For Log-Concave Densities

    Full text link
    An elementary proof is provided of sharp bounds for the varentropy of random vectors with log-concave densities, as well as for deviations of the information content from its mean. These bounds significantly improve on the bounds obtained by Bobkov and Madiman ({\it Ann. Probab.}, 39(4):1528--1543, 2011).Comment: 15 pages. Changes in v2: Remark 2.5 (due to C. Saroglou) added with more general sufficient conditions for equality in Theorem 2.3. Also some minor corrections and added reference
    corecore