380 research outputs found

    Error concealment using motion field interpolation

    Get PDF

    Enhanced spatial error concealment with directional entropy based interpolation switching

    Get PDF

    Video transmission over a relay channel with a compress-forward code design

    Get PDF
    There is an increasing demand to support high data rate multimedia applications over the current day wireless networks which are highly prone to errors. Relay channels, by virtue of their spatial diversity, play a vital role in meeting this demand without much change to the current day systems. A compress-forward relaying scheme is one of the exciting prospects in this regard owing to its ability to always outperform direct transmission. With regards to video transmission, there is a serious need to ensure higher protection for the source bits that are more important and sensitive. The objective of this thesis is to develop a practical scheme for transmitting video data over a relay channel using a compress-forward relaying scheme and compare it to direct and multi-hop transmissions. We also develop a novel scheme whereby the relay channel can be used as a means to provide the required unequal error protection among the MPEG-2 bit stream. The area of compress-forward (CF) relaying has not been developed much to date, with most of the research directed towards the decode-forward scheme. The fact that compress-forward relaying always ensures better results than direct transmission is an added advantage. This has motivated us to employ CF relaying in our implementation. Video transmission and streaming applications are being increasingly sought after in the current generation wireless systems. The fact that video applications are bandwidth demanding and error prone, and the wireless systems are band-limited and unreliable, makes this a challenging task. CF relaying, by virtue of their path diversity, can be considered to be a new means for video transmission. To exploit the above advantages, we propose an implementation for video transmission over relay channels using a CF relaying scheme. Practical gains in peak signal-to-noise ratio (PSNR) have been observed for our implementation compared to the simple binary-input additive white Gaussian noise (BIAWGN) and two-hop transmission scenarios

    Multiple Description Video Coding Using Joint Frame Duplication/Interpolation

    Get PDF
    Multiple description coding (MDC) is a promising alternative to combatting information loss without any retransmission. In this paper, an effective MD video codec is designed based on temporal pre- and post-processing of video sequences without modifying the actual coding process itself, which makes it compatible with the current standard source or channel codec. For ease of post-processing, motion-compensated interpolation (MCI) based on piecewise uniform motion assumption is adopted to estimate the lost frame in side decoding. Accordingly, to match the post-processing, in the pre-processing joint frame duplication/interpolation is first applied to the original video data before performing odd/even frame splitting, which attempts to make the motion variety in the generated descriptions piecewise uniformly thus achieving better side reconstructed quality based on MCI. The experimental results exhibit better performance of the proposed scheme than some other tested schemes, in both the on-off channel environment and packet loss network

    On the performance of temporal error concealment for long-term motion-compensated prediction

    Get PDF

    Concealment algorithms for networked video transmission systems

    Get PDF
    This thesis addresses the problem of cell loss when transmitting video data over an ATM network. Cell loss causes sections of an image to be lost or discarded in the interconnecting nodes between the transmitting and receiving locations. The method used to combat this problem is to use a technique called Error Concealment, where the lost sections of an image are replaced with approximations derived from the information in the surrounding areas to the error. This technique does not require any additional encoding, as used by Error Correction. Conventional techniques conceal from within the pixel domain, but require a large amount of processing (2N2 up to 20N2) where N is the dimension of an N×N square block. Also, previous work at Loughborough used Linear Interpolation in the transform domain, which required much less processing, to conceal the error. [Continues.

    Survey of Error Concealment techniques: Research directions and open issues

    Full text link
    © 2015 IEEE. Error Concealment (EC) techniques use either spatial, temporal or a combination of both types of information to recover the data lost in transmitted video. In this paper, existing EC techniques are reviewed, which are divided into three categories, namely Intra-frame EC, Inter-frame EC, and Hybrid EC techniques. We first focus on the EC techniques developed for the H.264/AVC standard. The advantages and disadvantages of these EC techniques are summarized with respect to the features in H.264. Then, the EC algorithms are also analyzed. These EC algorithms have been recently adopted in the newly introduced H.265/HEVC standard. A performance comparison between the classic EC techniques developed for H.264 and H.265 is performed in terms of the average PSNR. Lastly, open issues in the EC domain are addressed for future research consideration
    corecore