135 research outputs found

    Fast block-based image restoration employing the improved best neighborhood matching approach

    Get PDF
    2005-2006 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Image information restoration based on long-range correlation

    Get PDF
    2001-2002 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Fast Block-Based Image Restoration Employing the Improved Best Neighborhood Matching Approach

    Full text link

    Improved Side Information Generation for Distributed Video Coding by Exploiting Spatial and Temporal Correlations

    Get PDF
    Distributed Video Coding (DVC) is a new paradigm in video coding, which is receiving a lot of interests nowadays. Side Information (SI) generation is a key function in the DVC decoder, and plays a key-role in determining the performance of the codec. This paper proposes an improved motion compensated frame interpolation for SI generation in DVC, which exploits both spatial and temporal correlations in the sequences. Partially decoded Wyner-Ziv (WZ) frames, based on initial SI by motion compensated temporal interpolation, are exploited to improve the performance of the whole SI generation. More specifically, an enhanced temporal frame interpolation is proposed, including motion vector refinement and smoothing, optimal compensation mode selection, and a new matching criterion for motion estimation. The improved SI technique is also applied to a new hybrid spatial and temporal error concealment scheme to conceal errors in WZ frames, where the error-concealed results from spatial concealment are used to improve the performance of temporal concealment. Simulation results show that the proposed scheme can achieve up to 1.0 dB improvement in rate distortion performance in WZ frames for video with high motion, when compared to state-of-the-art DVC. In addition, both the objective and perceptual quality of the corrupted sequences are significantly improved by the proposed hybrid error concealment scheme, outperforming both spatial and temporal concealments alone

    Error Resilience in Heterogeneous Visual Communications

    Get PDF
    A critical and challenging aspect of visual communication technologies is to immunize visual information to transmission errors. In order to effectively protect visual content against transmission errors, various kinds of heterogeneities involved in multimedia delivery need to be considered, such as compressed stream characteristics heterogeneity, channel condition heterogeneity, multi-user and multi-hop heterogeneity. The main theme of this dissertation is to explore these heterogeneities involved in error-resilient visual communications to deliver different visual content over heterogeneous networks with good visual quality. Concurrently transmitting multiple video streams in error-prone environment faces many challenges, such as video content characteristics are heterogeneous, transmission bandwidth is limited, and the user device capabilities vary. These challenges prompt the need for an integrated approach of error protection and resource allocation. One motivation of this dissertation is to develop such an integrated approach for an emerging application of multi-stream video aggregation, i.e. multi-point video conferencing. We propose a distributed multi-point video conferencing system that employs packet division multiplexing access (PDMA)-based error protection and resource allocation, and explore the multi-hop awareness to deliver good and fair visual quality of video streams to end users. When the transport layer mechanism, such as forward error correction (FEC), cannot provide sufficient error protection on the payload stream, the unrecovered transmission errors may lead to visual distortions at the decoder. In order to mitigate the visual distortions caused by the unrecovered errors, concealment techniques can be applied at the decoder to provide an approximation of the original content. Due to image characteristics heterogeneity, different concealment approaches are necessary to accommodate different nature of the lost image content. We address this heterogeneity issue and propose to apply a classification framework that adaptively selects the suitable error concealment technique for each damaged image area. The analysis and extensive experimental results in this dissertation demonstrate that the proposed integrated approach of FEC and resource allocation as well as the new classification-based error concealment approach can significantly outperform conventional error-resilient approaches

    Детектування таємного вмісту в стиснених фрактальним алгоритмом зображеннях

    Get PDF
    Запропоновано критерій для встановлення присутності прихованих даних у фрактальному коді зображень. Використано підхід, що полягає в оцінюванні стеганографічної загрози кожного окремого запису у фрактальному коді. Дана оцінка базується на особливостях методів фрактального стиснення. Кількість позитивно оцінених блоків використовується для подальшого загального висновку про можливість існування вбудованих даних. Ефективність розробленого детектора встановлено експериментально та порівняно з існуючими

    Selected topics on distributed video coding

    Get PDF
    Distributed Video Coding (DVC) is a new paradigm for video compression based on the information theoretical results of Slepian and Wolf (SW), and Wyner and Ziv (WZ). While conventional coding has a rigid complexity allocation as most of the complex tasks are performed at the encoder side, DVC enables a flexible complexity allocation between the encoder and the decoder. The most novel and interesting case is low complexity encoding and complex decoding, which is the opposite of conventional coding. While the latter is suitable for applications where the cost of the decoder is more critical than the encoder's one, DVC opens the door for a new range of applications where low complexity encoding is required and the decoder's complexity is not critical. This is interesting with the deployment of small and battery-powered multimedia mobile devices all around in our daily life. Further, since DVC operates as a reversed-complexity scheme when compared to conventional coding, DVC also enables the interesting scenario of low complexity encoding and decoding between two ends by transcoding between DVC and conventional coding. More specifically, low complexity encoding is possible by DVC at one end. Then, the resulting stream is decoded and conventionally re-encoded to enable low complexity decoding at the other end. Multiview video is attractive for a wide range of applications such as free viewpoint television, which is a system that allows viewing the scene from a viewpoint chosen by the viewer. Moreover, multiview can be beneficial for monitoring purposes in video surveillance. The increased use of multiview video systems is mainly due to the improvements in video technology and the reduced cost of cameras. While a multiview conventional codec will try to exploit the correlation among the different cameras at the encoder side, DVC allows for separate encoding of correlated video sources. Therefore, DVC requires no communication between the cameras in a multiview scenario. This is an advantage since communication is time consuming (i.e. more delay) and requires complex networking. Another appealing feature of DVC is the fact that it is based on a statistical framework. Moreover, DVC behaves as a natural joint source-channel coding solution. This results in an improved error resilience performance when compared to conventional coding. Further, DVC-based scalable codecs do not require a deterministic knowledge of the lower layers. In other words, the enhancement layers are completely independent from the base layer codec. This is called the codec-independent scalability feature, which offers a high flexibility in the way the various layers are distributed in a network. This thesis addresses the following topics: First, the theoretical foundations of DVC as well as the practical DVC scheme used in this research are presented. The potential applications for DVC are also outlined. DVC-based schemes use conventional coding to compress parts of the data, while the rest is compressed in a distributed fashion. Thus, different conventional codecs are studied in this research as they are compared in terms of compression efficiency for a rich set of sequences. This includes fine tuning the compression parameters such that the best performance is achieved for each codec. Further, DVC tools for improved Side Information (SI) and Error Concealment (EC) are introduced for monoview DVC using a partially decoded frame. The improved SI results in a significant gain in reconstruction quality for video with high activity and motion. This is done by re-estimating the erroneous motion vectors using the partially decoded frame to improve the SI quality. The latter is then used to enhance the reconstruction of the finally decoded frame. Further, the introduced spatio-temporal EC improves the quality of decoded video in the case of erroneously received packets, outperforming both spatial and temporal EC. Moreover, it also outperforms error-concealed conventional coding in different modes. Then, multiview DVC is studied in terms of SI generation, which differentiates it from the monoview case. More specifically, different multiview prediction techniques for SI generation are described and compared in terms of prediction quality, complexity and compression efficiency. Further, a technique for iterative multiview SI is introduced, where the final SI is used in an enhanced reconstruction process. The iterative SI outperforms the other SI generation techniques, especially for high motion video content. Finally, fusion techniques of temporal and inter-view side informations are introduced as well, which improves the performance of multiview DVC over monoview coding. DVC is also used to enable scalability for image and video coding. Since DVC is based on a statistical framework, the base and enhancement layers are completely independent, which is an interesting property called codec-independent scalability. Moreover, the introduced DVC scalable schemes show a good robustness to errors as the quality of decoded video steadily decreases with error rate increase. On the other hand, conventional coding exhibits a cliff effect as the performance drops dramatically after a certain error rate value. Further, the issue of privacy protection is addressed for DVC by transform domain scrambling, which is used to alter regions of interest in video such that the scene is still understood and privacy is preserved as well. The proposed scrambling techniques are shown to provide a good level of security without impairing the performance of the DVC scheme when compared to the one without scrambling. This is particularly attractive for video surveillance scenarios, which is one of the most promising applications for DVC. Finally, a practical DVC demonstrator built during this research is described, where the main requirements as well as the observed limitations are presented. Furthermore, it is defined in a setup being as close as possible to a complete real application scenario. This shows that it is actually possible to implement a complete end-to-end practical DVC system relying only on realistic assumptions. Even though DVC is inferior in terms of compression efficiency to the state of the art conventional coding for the moment, strengths of DVC reside in its good error resilience properties and the codec-independent scalability feature. Therefore, DVC offers promising possibilities for video compression with transmission over error-prone environments requirement as it significantly outperforms conventional coding in this case

    Visual Saliency in Video Compression and Transmission

    Get PDF
    This dissertation explores the concept of visual saliency—a measure of propensity for drawing visual attention—and presents various novel methods for utilization of visual saliencyin video compression and transmission. Specifically, a computationally-efficient method for visual saliency estimation in digital images and videos is developed, which approximates one of the most well-known visual saliency models. In the context of video compression, a saliency-aware video coding method is proposed within a region-of-interest (ROI) video coding paradigm. The proposed video coding method attempts to reduce attention-grabbing coding artifacts and keep viewers’ attention in areas where the quality is highest. The method allows visual saliency to increase in high quality parts of the frame, and allows saliency to reduce in non-ROI parts. Using this approach, the proposed method is able to achieve the same subjective quality as competing state-of-the-art methods at a lower bit rate. In the context of video transmission, a novel saliency-cognizant error concealment method is presented for ROI-based video streaming in which regions with higher visual saliency are protected more heavily than low saliency regions. In the proposed error concealment method, a low-saliency prior is added to the error concealment process as a regularization term, which serves two purposes. First, it provides additional side information for the decoder to identify the correct replacement blocks for concealment. Second, in the event that a perfectly matched block cannot be unambiguously identified, the low-saliency prior reduces viewers’ visual attention on the loss-stricken regions, resulting in higher overall subjective quality. During the course of this research, an eye-tracking dataset for several standard video sequences was created and made publicly available. This dataset can be utilized to test saliency models for video and evaluate various perceptually-motivated algorithms for video processing and video quality assessment

    Construction de mosaïques de super-résolution à partir de la vidéo de basse résolution. Application au résumé vidéo et la dissimulation d'erreurs de transmission.

    Get PDF
    La numérisation des vidéos existantes ainsi que le développement explosif des services multimédia par des réseaux comme la diffusion de la télévision numérique ou les communications mobiles ont produit une énorme quantité de vidéos compressées. Ceci nécessite des outils d’indexation et de navigation efficaces, mais une indexation avant l’encodage n’est pas habituelle. L’approche courante est le décodage complet des ces vidéos pour ensuite créer des indexes. Ceci est très coûteux et par conséquent non réalisable en temps réel. De plus, des informations importantes comme le mouvement, perdus lors du décodage, sont reestimées bien que déjà présentes dans le flux comprimé. Notre but dans cette thèse est donc la réutilisation des données déjà présents dans le flux comprimé MPEG pour l’indexation et la navigation rapide. Plus précisément, nous extrayons des coefficients DC et des vecteurs de mouvement. Dans le cadre de cette thèse, nous nous sommes en particulier intéressés à la construction de mosaïques à partir des images DC extraites des images I. Une mosaïque est construite par recalage et fusion de toutes les images d’une séquence vidéo dans un seul système de coordonnées. Ce dernier est en général aligné avec une des images de la séquence : l’image de référence. Il en résulte une seule image qui donne une vue globale de la séquence. Ainsi, nous proposons dans cette thèse un système complet pour la construction des mosaïques à partir du flux MPEG-1/2 qui tient compte de différentes problèmes apparaissant dans des séquences vidéo réeles, comme par exemple des objets en mouvment ou des changements d’éclairage. Une tâche essentielle pour la construction d’une mosaïque est l’estimation de mouvement entre chaque image de la séquence et l’image de référence. Notre méthode se base sur une estimation robuste du mouvement global de la caméra à partir des vecteurs de mouvement des images P. Cependant, le mouvement global de la caméra estimé pour une image P peut être incorrect car il dépend fortement de la précision des vecteurs encodés. Nous détectons les images P concernées en tenant compte des coefficients DC de l’erreur encodée associée et proposons deux méthodes pour corriger ces mouvements. Unemosaïque construite à partir des images DC a une résolution très faible et souffre des effets d’aliasing dus à la nature des images DC. Afin d’augmenter sa résolution et d’améliorer sa qualité visuelle, nous appliquons une méthode de super-résolution basée sur des rétro-projections itératives. Les méthodes de super-résolution sont également basées sur le recalage et la fusion des images d’une séquence vidéo, mais sont accompagnées d’une restauration d’image. Dans ce cadre, nous avons développé une nouvelleméthode d’estimation de flou dû au mouvement de la caméra ainsi qu’une méthode correspondante de restauration spectrale. La restauration spectrale permet de traiter le flou globalement, mais, dans le cas des obvi jets ayant un mouvement indépendant du mouvement de la caméra, des flous locaux apparaissent. C’est pourquoi, nous proposons un nouvel algorithme de super-résolution dérivé de la restauration spatiale itérative de Van Cittert et Jansson permettant de restaurer des flous locaux. En nous basant sur une segmentation d’objets en mouvement, nous restaurons séparément lamosaïque d’arrière-plan et les objets de l’avant-plan. Nous avons adapté notre méthode d’estimation de flou en conséquence. Dans une premier temps, nous avons appliqué notre méthode à la construction de résumé vidéo avec pour l’objectif la navigation rapide par mosaïques dans la vidéo compressée. Puis, nous établissions comment la réutilisation des résultats intermédiaires sert à d’autres tâches d’indexation, notamment à la détection de changement de plan pour les images I et à la caractérisation dumouvement de la caméra. Enfin, nous avons exploré le domaine de la récupération des erreurs de transmission. Notre approche consiste en construire une mosaïque lors du décodage d’un plan ; en cas de perte de données, l’information manquante peut être dissimulée grace à cette mosaïque
    corecore