105 research outputs found

    Concavity of Mutual Information Rate for Input-Restricted Finite-State Memoryless Channels at High SNR

    Full text link
    We consider a finite-state memoryless channel with i.i.d. channel state and the input Markov process supported on a mixing finite-type constraint. We discuss the asymptotic behavior of entropy rate of the output hidden Markov chain and deduce that the mutual information rate of such a channel is concave with respect to the parameters of the input Markov processes at high signal-to-noise ratio. In principle, the concavity result enables good numerical approximation of the maximum mutual information rate and capacity of such a channel.Comment: 26 page

    Concavity of the mutual information rate for input-restricted memoryless channels at high SNR

    Get PDF
    We consider a memoryless channel with an input Markov process supported on a mixing finite-type constraint. We continue the development of asymptotics for the entropy rate of the output hidden Markov chain and deduce that, at high signal-to-noise ratio, the mutual information rate of such a channel is concave with respect to "almost" all input Markov chains of a given order. © 2012 IEEE.published_or_final_versio

    Concavity of mutual information rate of finite-state channels

    Get PDF
    The computation of the capacity of a finite-state channel (FSC) is a fundamental and long-standing open problem in information theory. The capacity of a memoryless channel can be effectively computed via the classical Blahut-Arimoto algorithm (BAA), which, however, does not apply to a general FSC. Recently Vontobel et al. [1] generalized the BAA to compute the capacity of a finite-state machine channel with a Markovian input. Their proof of the convergence of this algorithm, however, depends on the concavity conjecture posed in their paper. In this paper, we confirm the concavity conjecture for some special FSCs. On the other hand, we give examples to show that the conjecture is not true in general.published_or_final_versio

    A Randomized Algorithm for the Capacity of Finite-State Channels

    Get PDF
    Inspired by ideas from the field of stochastic approximation, we propose a ran- domized algorithm to compute the capacity of a finite-state channel with a Markovian input. When the mutual information rate of the channel is concave with respect to the chosen parameterization, the proposed algorithm proves to be convergent to the ca- pacity of the channel almost surely with the derived convergence rate. We also discuss the convergence behavior of the algorithm without the concavity assumption.published_or_final_versio

    Concavity of the Mutual Information Rate for Input-Restricted Memoryless Channels at High SNR

    Full text link
    • …
    corecore