28 research outputs found

    Understanding Quantum Technologies 2022

    Full text link
    Understanding Quantum Technologies 2022 is a creative-commons ebook that provides a unique 360 degrees overview of quantum technologies from science and technology to geopolitical and societal issues. It covers quantum physics history, quantum physics 101, gate-based quantum computing, quantum computing engineering (including quantum error corrections and quantum computing energetics), quantum computing hardware (all qubit types, including quantum annealing and quantum simulation paradigms, history, science, research, implementation and vendors), quantum enabling technologies (cryogenics, control electronics, photonics, components fabs, raw materials), quantum computing algorithms, software development tools and use cases, unconventional computing (potential alternatives to quantum and classical computing), quantum telecommunications and cryptography, quantum sensing, quantum technologies around the world, quantum technologies societal impact and even quantum fake sciences. The main audience are computer science engineers, developers and IT specialists as well as quantum scientists and students who want to acquire a global view of how quantum technologies work, and particularly quantum computing. This version is an extensive update to the 2021 edition published in October 2021.Comment: 1132 pages, 920 figures, Letter forma

    InformationsĂŒbertragung durch QuantenkanĂ€le

    Get PDF
    This PhD thesis represents work done between Aug. 2003 and Dec. 2006 in Reinhard F. Werner's quantum information theory group at Technische UniversitĂ€t Braunschweig, and Artur Ekert's Centre for Quantum Computation at the University of Cambridge. Quantum information science combines ideas from physics, computer science and information theory to investigate how quintessentially quantum mechanical effects such as superposition and entanglement can be employed for the handling and transfer of information. My thesis falls into the field of abstract quantum information theory, which is concerned with the fundamental resources for quantum information processing and their interconversion and tradeoffs. Every such processing of quantum information can be represented as a quantum channel: a completely positive and trace-preserving map between observable algebras associated to physical systems. This work investigates both fundamental properties of quantum channels (mostly in Chs. 3 and 4) and their asymptotic capacities for classical as well as quantum information transfer (in Chs. 5 through 8).Diese Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) entstand zwischen August 2003 und Dezember 2006 in Prof. Reinhard F. Werners Arbeitsgruppe Quanteninformationstheorie an der Technischen UniversitĂ€t Braunschweig und Prof. Artur Ekerts Centre for Quantum Computation an der UniversitĂ€t Cambridge. Die Quanteninformationswissenschaft untersucht mit den Ideen und Methoden der Physik, der Informatik und der Informationstheorie, wie sich charakteristisch quantenphysikalische Effekte, beispielsweise Superposition und VerschrĂ€nkung, zur Verarbeitung und Übertragung von Information nutzbar machen lassen. Die vorliegende Dissertation fĂ€llt in das Gebiet der abstrakten Quanteninformationstheorie, die die grundlegenden Ressourcen fĂŒr die Verarbeitung von Quanteninformation sowie deren Wechselbeziehungen und AbhĂ€ngigkeiten untersucht. Eine jede solche Verarbeitung von Quanteninformation lĂ€ĂŸt sich mathematisch beschreiben als sogenannter Quantenkanal, eine vollstĂ€ndig positive und spurerhaltende Abbildung zwischen den physikalischen Systemen zugeordneten Observablen-Algebren. In dieser Arbeit werden sowohl grundlegende Eigenschaften solcher QuantenkanĂ€le (vor allem in den Kap. 3 und Kap. 4) als auch ihre asymptotischen KapazitĂ€ten fĂŒr die Übertragung von klassischer Information und Quanteninformation (in Kap. 5 bis 8) untersucht
    corecore